题意简述

维护一个序列,支持如下操作

  • 把[a, b]区间内的所有数全变成0
  • 把[a, b]区间内的所有数全变成1
  • 把[a,b]区间内所有的0变成1,所有的1变成0
  • 询问[a, b]区间内总共有多少个1
  • 询问[a, b]区间内最多有多少个连续的1

题解思路

线段树

对于每个节点,维护对应区间

  • sum:1的个数
  • L0:连续0的最大长度
  • L1:连续1的最长长度
  • l0:包含区间左端点的连续0的最大长度
  • l1:包含区间左端点的连续1的最大长度
  • r0:包含区间右端点的连续0的最大长度
  • r1:包含区间右端点的连续1的最大长度
  • la:-1表示不变,0表示全为0,1表示全为1
  • tn:0表示不变,1表示翻转

可推出关系

ls表示左儿子,rs表示右儿子,lenl表示左儿子区间长度,lenr表示右儿子区间长度

\(L0 = max(L0_{ls}, L0_{rs}, r0_{ls}+l0_{rs})\)

\(l0 = l0_{ls} + l0_{rs} * (l0_{ls} == lenl)\)

\(r0 = r0_{rs} + r0_{ls} * (r0_{rs} == lenr)\)

L1,l1,r1同理可得。

下传标记时先判断la,因为全都变为1个数可以覆盖翻转的结果

代码

#include <cstdio>
#include <algorithm>
#define ci const int
#define ls x<<1
#define rs x<<1|1
#define mid ((l+r)>>1)
using std::max; using std::swap;
int n,m,opt,a,b,t;
struct Node1 { int sum,L0,L1,l0,l1,r0,r1,la,tn; };
struct Node2 { int sum,L1,l1,r1; };
struct Segement_Tree {
Node1 s[400010];
void push_up(ci& x,ci& lenl,ci& lenr) {
s[x].sum=s[ls].sum+s[rs].sum;
s[x].L0=max(max(s[ls].L0,s[rs].L0),s[ls].r0+s[rs].l0);
s[x].L1=max(max(s[ls].L1,s[rs].L1),s[ls].r1+s[rs].l1);
s[x].l0=s[ls].l0+s[rs].l0*(s[ls].l0==lenl);
s[x].l1=s[ls].l1+s[rs].l1*(s[ls].l1==lenl);
s[x].r0=s[rs].r0+s[ls].r0*(s[rs].r0==lenr);
s[x].r1=s[rs].r1+s[ls].r1*(s[rs].r1==lenr);
}
void push_down(ci& x,ci& lenl,ci& lenr) {
if (s[x].la^-1) {
s[ls].sum=s[ls].L1=s[ls].l1=s[ls].r1=s[x].la*lenl;
s[rs].sum=s[rs].L1=s[rs].l1=s[rs].r1=s[x].la*lenr;
s[ls].L0=s[ls].l0=s[ls].r0=(s[x].la^1)*lenl;
s[rs].L0=s[rs].l0=s[rs].r0=(s[x].la^1)*lenr;
s[ls].la=s[rs].la=s[x].la; s[x].la = -1; s[ls].tn=s[rs].tn=0;
}
if (s[x].tn) {
s[ls].sum=lenl-s[ls].sum; s[rs].sum=lenr-s[rs].sum;
swap(s[ls].L0,s[ls].L1); swap(s[rs].L0,s[rs].L1);
swap(s[ls].l0,s[ls].l1); swap(s[rs].l0,s[rs].l1);
swap(s[ls].r0,s[ls].r1); swap(s[rs].r0,s[rs].r1);
s[ls].tn^=1; s[rs].tn^=1; s[x].la=-1; s[x].tn=0;
}
}
void build(ci& x,ci& l,ci& r) {
s[x].la=-1;
if (l==r) { scanf("%d",&t); s[x]=(Node1){t,t^1,t,t^1,t,t^1,t,-1,0}; return; }
build(ls,l,mid); build(rs,mid+1,r);
push_up(x,mid-l+1,r-mid);
}
void change(ci& x,ci& L,ci& R,ci& l,ci& r,ci& k) {
if (L<=l&&r<=R) {
int x1=k*(r-l+1),x2=(k^1)*(r-l+1);
s[x] = (Node1){x1,x2,x1,x2,x1,x2,x1,k,0};
return;
}
if (R<l||r<L) return;
push_down(x,mid-l+1,r-mid);
change(ls,L,R,l,mid,k); change(rs,L,R,mid+1,r,k);
push_up(x,mid-l+1,r-mid);
}
void turn(ci& x,ci& L,ci& R,ci& l,ci& r) {
if (L<=l&&r<=R) {
s[x].sum=r-l+1-s[x].sum; s[x].tn^=1;
swap(s[x].L0,s[x].L1); swap(s[x].l0,s[x].l1); swap(s[x].r0,s[x].r1);
return;
}
if (R<l||r<L) return;
push_down(x,mid-l+1,r-mid);
turn(ls,L,R,l,mid); turn(rs,L,R,mid+1,r);
push_up(x,mid-l+1,r-mid);
}
Node2 query(ci& x,ci& L,ci& R,ci& l,ci& r) {
if (L<=l&&r<=R) return (Node2){s[x].sum,s[x].L1,s[x].l1,s[x].r1};
if (R<l||r<L) return (Node2){0,0,0,0};
push_down(x,mid-l+1,r-mid);
Node2 s,s1=query(ls,L,R,l,mid),s2=query(rs,L,R,mid+1,r);
s.sum=s1.sum+s2.sum;
s.L1=max(max(s1.L1,s2.L1),s1.r1+s2.l1);
s.l1=s1.l1+s2.l1*(s1.l1==mid-l+1);
s.r1=s2.r1+s1.r1*(s2.r1==r-mid);
return s;
}
}sgt;
int main() {
scanf("%d%d",&n,&m);
sgt.build(1,1,n);
for (register int i=1; i<=m; ++i) {
scanf("%d%d%d",&opt,&a,&b); ++a; ++b;
if (opt==4) printf("%d\n",sgt.query(1,a,b,1,n).L1);
else if (opt==3) printf("%d\n",sgt.query(1,a,b,1,n).sum);
else if (opt==2) sgt.turn(1,a,b,1,n);
else sgt.change(1,a,b,1,n,opt);
}
}

洛谷 P2572 [SCOI2010]序列操作的更多相关文章

  1. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  2. 洛谷P2572 [SCOI2010]序列操作

    线段树 pushdown写的很浪~ #include<cstdio> #include<cstdlib> #include<algorithm> #include& ...

  3. 洛谷P2572 [SCOI2010]序列操作(ODT)

    题解 题意 题目链接 Sol ODT板子题..... // luogu-judger-enable-o2 #include<bits/stdc++.h> #define LL long l ...

  4. 洛谷P2572 [SCOI2010]序列操作(珂朵莉树)

    传送门 珂朵莉树是个吼东西啊 这题线段树代码4k起步……珂朵莉树只要2k…… 虽然因为这题数据不随机所以珂朵莉树的复杂度实际上是错的…… 然而能过就行对不对…… (不过要是到时候noip我还真不敢打… ...

  5. 【题解】Luogu P2572 [SCOI2010]序列操作

    原题传送门:P2572 [SCOI2010]序列操作 这题好弱智啊 裸的珂朵莉树 前置芝士:珂朵莉树 窝博客里对珂朵莉树的介绍 没什么好说的自己看看吧 操作1:把区间内所有数推平成0,珂朵莉树基本操作 ...

  6. P2572 [SCOI2010]序列操作

    对自己 & \(RNG\) : 骄兵必败 \(lpl\)加油! P2572 [SCOI2010]序列操作 题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要 ...

  7. Luogu P2572 [SCOI2010]序列操作 线段树。。

    咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...

  8. bzoj 1858: [Scoi2010]序列操作

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MB 线段树,对于每个区间需要分别维护左右和中间的1和0连续个数,并在op=4时特殊 ...

  9. BZOJ 1858: [Scoi2010]序列操作( 线段树 )

    略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...

随机推荐

  1. Asp.Net url参数加密存在特殊符号处理方法

    Url出现了有+,空格,/,?,%,#,&,=等特殊符号的时候,服务器端无法获得正确的参数值,解决办法. 使用System.Web.HttpUtility.UrlEncode()方法将这些字符 ...

  2. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  3. springcloud-高可用部署

    1.场景描述 前端时间只简单介绍了下springcloud的高可用方案(springcloud高可用方案),今天详细介绍下如何实施springcloud的高可用部署. 2.解决方案 2.1 架构方案 ...

  4. vbox 设置时间不与主机同步

    C:\Users\2345-lp0395>"D:\Program Files\Oracle\VirtualBox\VBoxManage.exe" setexadata win ...

  5. LeetCode 解题目录

    0001. 两数之和(Java) 0003. 无重复字符的最长子串(Java) 0172. 阶乘后的零 (Java) 0287. 寻找重复数(Java)

  6. DH、RSA与ElGamal非对称加密算法实现及应用

    1.对称加密与非对称加密概述 关于对称加密与非对称加密的概念这里不再多说,感兴趣可以看下我之前的几篇文章,下面说一说两者的主要区别. 对称加密算法数据安全,密钥管理复杂,密钥传递过程复杂,存在密钥泄露 ...

  7. 输出单链表倒数第K个结点值

    #include<iostream>using namespace std;#include<malloc.h>#include<stdio.h>typedef i ...

  8. springboot+kafka+邮件发送(最佳实践)

    导读 集成spring-kafka,生产者生产邮件message,消费者负责发送 引入线程池,多线程发送消息 多邮件服务器配置 定时任务生产消息:计划邮件发送 实现过程 导入依赖 <proper ...

  9. 从原理层面掌握@SessionAttribute的使用【一起学Spring MVC】

    每篇一句 不是你当上了火影大家就认可你,而是大家都认可你才能当上火影 前言 该注解顾名思义,作用是将Model中的属性同步到session会话当中,方便在下一次请求中使用(比如重定向场景~). 虽然说 ...

  10. mysql是如何实现事务隔离以及MVCC详解

    提到事务,你肯定会想到ACID(Atomicity.Consistency.Isolation.Durability,即原子性.一致性.隔离性.持久性),我们就来说说其中I,也就是"隔离性& ...