感知机模型

输入空间是$\chi\subseteq\mathbb{R}^n$,输出空间是$y={+1,-1}$
感知机定义为:$f(x)=sign(wx+b)$

感知机学习策略

输入空间任一点$x_0$到超平面S的距离:
$\frac{1}{||w||}|wx_0+b|$
误分类数据$(x_i,y_i)$,有$-y_i(wx_i+b)>0$
误分类点$x_i$到超平面S的距离$-\frac{1}{||w||}y_i(wx_i+b)$
误分类点集合M,所有误分类点到超平面S的距离
$-\frac{1}{||w||}\sum_{x_i\in{M}}y_i(wx_i+b)$
由此,感知机损失函数定义为
$L(w,b)=-\sum_{x_i\in{M}}y_i(wx_i+b)$

感知机学习算法(原始形式)

输入:训练数据集
$T={(x_1,y_1),(x_2,y_2),(x_N,y_N)...,(x_1,y_1)}$
$x_i\in\chi\subseteq\mathbb{R}^n$,$y_i\in{y}={+1,-1}$,学习率$\eta$
输出:w,b;感知机模型$f(x)=sign(wx+b)$
(1)选取初值$w_0$,$b_0$
(2)训练集选取$(x_i,y_i)$
(3)IF $y_i(wx_i+b)≤0$
$w←w+\eta{y_ix_i}$
$b←b+\eta{y_i}$
(4)转至(2),直到没有误分类点。

:感知机算法是收敛的,在训练数据及上的误分类次数k满足
$k≤(\frac{R}{\gamma})^2$

感知机学习算法(对偶形式)

由原始形式
$w←w+\eta{y_ix_i}$
$b←b+\eta{y_i}$
进行n次,w,b关于$(x_i,y_i)$增量分别为$a_iy_ix_i$和$a_iy_i$
记$a_i=n_i\eta$,最后学习到的w,b表示为
$w=\sum_{i=1}^{N}a_iy_ix_i$
$b=\sum_{i=1}^{N}a_iy_i$
输入:训练数据集
$T={(x_1,y_1),(x_2,y_2),(x_N,y_N)...,(x_1,y_1)}$
$x_i\in\chi\subseteq\mathbb{R}^n$,$y_i\in{y}={+1,-1}$,学习率$\eta$
输出:a,b;感知机模型$f(x)=sign(\sum_{j=1}^{N}a_jy_jx_j·x+b)$
其中$a=(a_1,a_2,...,a_N)^T$
(1)$a←0$;$b←0$
(2)训练集选取$(x_i,y_i)$
(3)IF $y_i(\sum_{j=1}^{N}a_jy_jx_j·x_i+b)≤0$
$a_i←a_i+\eta$
$b←b+\eta{y_i}$
(4)转至(2),直到没有误分类点。
记Gram矩阵$G=[x_i·x_j]_{N×N}$

《统计学习方法》极简笔记P2:感知机数学推导的更多相关文章

  1. 《统计学习方法》极简笔记P5:决策树公式推导

    <统计学习方法>极简笔记P2:感知机数学推导 <统计学习方法>极简笔记P3:k-NN数学推导 <统计学习方法>极简笔记P4:朴素贝叶斯公式推导

  2. 《统计学习方法》极简笔记P4:朴素贝叶斯公式推导

    <统计学习方法>极简笔记P4:朴素贝叶斯公式推导 朴素贝叶斯基本方法 通过训练数据集 T={(x_1,y_1),(x_2,y_2),(x_N,y_N)...,(x_1,y_1)} 学习联合 ...

  3. 统计学习方法笔记 -- KNN

    K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是 ...

  4. 统计学习方法 --- 感知机模型原理及c++实现

    参考博客 Liam Q博客 和李航的<统计学习方法> 感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而 ...

  5. 我的第一个 Rails 站点:极简优雅的笔记工具-Raysnote

    出于公司开发需求,这个暑假我開始搞Ruby on Rails.在业余时间捣鼓了一个在线笔记应用:http://raysnote.com.这是一个极简而优雅的笔记站点(至少我个人这么觉得的). 笔记支持 ...

  6. 《统计学习方法》笔记九 EM算法及其推广

    本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称 ...

  7. 《统计学习方法》笔记三 k近邻法

    本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...

  8. 统计学习方法与Python实现(一)——感知机

    统计学习方法与Python实现(一)——感知机 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 假设输入的实例的特征空间为x属于Rn的n维特征向量, ...

  9. 统计学习方法笔记--EM算法--三硬币例子补充

    本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流 ...

随机推荐

  1. Class(类)和 继承

    ES6的class可以看作只是一个语法糖,它的绝大部分功能,ES5都可以做到,新的class写法只是让对象原型的写法更加清晰.更像面向对象编程的语法而已. //定义类 class Point { co ...

  2. 扒一扒那些教程中不常被提及的JavaScript小技巧

    1.过滤唯一值 Set类型是在ES6中新增的,它类似于数组,但是成员的值都是唯一的,没有重复的值.结合扩展运算符(...)我们可以创建一个新的数组,达到过滤原数组重复值的功能. const array ...

  3. MyBatis从入门到精通:update用法、delete用法

    update用法: 1.接口类中添加的方法: int updateById(SysUser sysUser); 2.映射文件中添加的代码: <update id="updateById ...

  4. 【bfs】密码锁-C++

    Description 现在一个紧急的任务是打开一个密码锁.密码由四位数字组成,每个数字从 1 到 9 进行编号.每次可以对任何数字加 1 或减 1.当将9加 1 时,数字将变为1,当1减 1 的时, ...

  5. MongoDB基础教程[菜鸟教程整理]

    MongoDB基础教程 ======================================================================================== ...

  6. SpringCloud解析之Zuul(二)

    本文基于Spring Cloud Edgware.SR6,Zuul版本1.3.1,解析Zuul的请求拦截机制,让大家对Zuul的原理有个大概的认识和了解.如有不对的地方,欢迎指正. 在上一期的Spri ...

  7. Excel催化剂开源第31波-pdf相关功能实现及类库介绍

    在Excel催化剂刚推出的pdf相关功能中,反馈很热烈,不止是用户层面好多人喜欢,也听到在.NET开发群里有询问pdf在winform上展现的功能诉求,一段时间没写开源篇,生怕大家以为Excel催化剂 ...

  8. MongoDB 启动时关于 NUMA 警告 的分析----(To avoid performance problems)

    1. 需求描述 观察MongoDB的启动Log,会看到一个关于  NUMA 的警告 和 优化建议 --17T17:: I CONTROL [initandlisten] ** WARNING: You ...

  9. k8s1.9.0安装--环境准备

    一.预先准备环境 1. 准备服务器 这里准备了三台centos虚拟机,每台一核cpu和2G内存,配置好root账户,并安装好了docker,后续的所有操作都是使用root账户.虚拟机具体信息如下表: ...

  10. configASSERT( uxCriticalNesting == ~0UL );问题

    今天在单步调试FreeRTOS时,一直进入port.c 中的configASSERT( uxCriticalNesting == ~0UL ):函数.照片如下 上网一查,并且结合这个英文注释,才发现, ...