题意

如果对一个数操作\(k\)次,那么这个数会变成\(c^{c^{...^{a_i}}}\),其中\(c\)有\(k\)个。

根据P4139 上帝与集合的正确用法这道题,我们可以知道一个数不断变为自己的欧拉函数,大约\(log\)次就会变成1,而任何数模\(1\)都是\(0\),于是我们可以用势能线段树解决。

因为模数不变,因此我们可以预处理所有\(\varphi(\varphi(...\varphi(p)...))\),之后在线段树上记录操作次数。

这样是三个\(log\)的,因为还要快速幂,可以对每个\(\varphi(\varphi(...\varphi(p)...))\)预处理,用光速幂解决。

注意,扩展中国剩余定理\(a_k\equiv a^{k\%\varphi(p)+\varphi(p)}\pmod{p}\)适用当且仅当\(k\geqslant \varphi(p)\),因此我们在求值时用一个\(flag\)表示是否要\(+\varphi(p)\)。

code:

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define ls(p) (p<<1)
#define rs(p) (p<<1|1)
const int maxn=50010;
const int maxt=10010;
int n,m,mod,C,maxtim;
int a[maxn];
int pw1[60][maxt],pw2[60][maxt];
bool flag;
bool flag1[60][maxt],flag2[60][maxt];
vector<int>ve;
struct Seg
{
#define sum(p) (seg[p].sum)
#define cnt(p) (seg[p].cnt)
int sum,cnt;
}seg[maxn<<2];
inline int read()
{
char c=getchar();int res=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
return res*f;
}
inline int phi(int x)
{
int res=x,tmp=x;
for(int i=2;i*i<=tmp;i++)
{
if(tmp%i)continue;
res=res/i*(i-1);
while(tmp%i==0)tmp/=i;
}
if(tmp>1)res=res/tmp*(tmp-1);
return res;
}
inline void pre_work()
{
int tmp=mod;
ve.push_back(mod);
while(tmp>1)tmp=phi(tmp),ve.push_back(tmp);
ve.push_back(1);
for(unsigned int i=0;i<ve.size();i++)
{
pw1[i][0]=1;
for(int j=1;j<=10000;j++)
{
pw1[i][j]=pw1[i][j-1]*C;
if(pw1[i][j]>=ve[i])pw1[i][j]%=ve[i],flag1[i][j]=1;
flag1[i][j]|=flag1[i][j-1];
}
}
for(unsigned int i=0;i<ve.size();i++)
{
pw2[i][0]=1;flag2[i][1]=flag1[i][10000];
for(int j=1;j<=10000;j++)
{
pw2[i][j]=pw2[i][j-1]*pw1[i][10000];
if(pw2[i][j]>=ve[i])pw2[i][j]%=ve[i],flag2[i][j]=1;
flag2[i][j]|=flag2[i][j-1];
}
}
}
inline void up(int p)
{
sum(p)=(sum(ls(p))+sum(rs(p)))%mod;
cnt(p)=min(cnt(ls(p)),cnt(rs(p)));
}
void build(int p,int l,int r)
{
if(l==r){sum(p)=a[l];return;}
int mid=(l+r)>>1;
build(ls(p),l,mid);build(rs(p),mid+1,r);
up(p);
}
inline int power(int x,int id)
{
flag=0;
int res=pw1[id][x%10000]*pw2[id][x/10000];
if(res>=ve[id])res%=ve[id],flag=1;
flag|=flag1[id][x%10000]|flag2[id][x/10000];
return res;
}
int calc(int x,int dep,int k)
{
flag=0;
if(dep==k)
{
if(x>=ve[dep])flag=1,x%=ve[dep];
return x;
}
int tmp=calc(x,dep+1,k);
return power(flag?tmp+ve[dep+1]:tmp,dep);
}
void change(int p,int l,int r,int ql,int qr)
{
if(cnt(p)>=(int)ve.size()-1)return;
if(l==r)
{
cnt(p)++;
sum(p)=calc(a[l],0,cnt(p));
return;
}
int mid=(l+r)>>1;
if(ql<=mid)change(ls(p),l,mid,ql,qr);
if(qr>mid)change(rs(p),mid+1,r,ql,qr);
up(p);
}
int query(int p,int l,int r,int ql,int qr)
{
if(l>=ql&&r<=qr)return sum(p);
int mid=(l+r)>>1,res=0;
if(ql<=mid)res=(res+query(ls(p),l,mid,ql,qr))%mod;
if(qr>mid)res=(res+query(rs(p),mid+1,r,ql,qr))%mod;
return res;
}
signed main()
{
//freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
n=read();m=read();mod=read();C=read();
for(int i=1;i<=n;i++)a[i]=read();
build(1,1,n);
pre_work();
for(int i=1;i<=m;i++)
{
int op=read(),l=read(),r=read();
if(!op)change(1,1,n,l,r);
else printf("%lld\n",query(1,1,n,l,r));
}
return 0;
}

P3747 [六省联考2017]相逢是问候的更多相关文章

  1. 洛谷 P3747 [六省联考2017]相逢是问候 解题报告

    P3747 [六省联考2017]相逢是问候 题目描述 \(\text {Informatik verbindet dich und mich.}\) 信息将你我连结. \(B\) 君希望以维护一个长度 ...

  2. 洛谷P3747 [六省联考2017]相逢是问候

    传送门 题解 扩展欧拉定理. 线段树维护,已经全改到底了的节点就不管,不然暴力修改下去. //Achen #include<algorithm> #include<iostream& ...

  3. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

  4. bzoj千题计划271:bzoj4869: [六省联考2017]相逢是问候

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath&g ...

  5. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

  6. 【LuoguP3747】[六省联考2017] 相逢是问候

    题目链接 题意 给定一个长度为 n 的序列 a , 给定一个正整数 c 每次修改操作是把一段区间内的数 \(x_i\) 修改为 \(c^{x_i}\) 询问区间和模 p 的结果 Sol 修改是把一个数 ...

  7. 2017 [六省联考] T2 相逢是问候

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1205  Solved: 409[Submit][Stat ...

  8. 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)

    [BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...

  9. 【BZOJ4868】[六省联考2017]期末考试(贪心)

    [BZOJ4868][六省联考2017]期末考试(贪心) 题面 BZOJ 洛谷 题解 显然最终的答案之和最后一个公布成绩的课程相关. 枚举最后一天的日期,那么维护一下前面有多少天可以向后移,后面总共需 ...

随机推荐

  1. Linux环境(服务器)下非root用户安装Python3.6

    Linux环境(服务器)下非root用户安装Python3.6 在管理实验室集群时候,遇到的问题--非root用户在搭建自己环境时候,如何搭建. 注意: root用户的根目录是root,非root用户 ...

  2. 【HTTP】402- 深入理解http2.0协议,看这篇就够了!

    本文字数:3825字 预计阅读时间:20分钟 导读 http2.0是一种安全高效的下一代http传输协议.安全是因为http2.0建立在https协议的基础上,高效是因为它是通过二进制分帧来进行数据传 ...

  3. 关于 Kafka 的一些面试题目

    上周客串了一下面试官,在这里就简单记录一下期间我问到的一些关于 Kafka 的面试题目,这些都是我平时在学习 Kafka 的一些总结要点. 谈谈你对 kafka 的整体认识? 问这个问题主要是想知道面 ...

  4. yum换源,rpm包下载,源码包安装

    一.yum更换源 yum自带源地址一般斗是国外的,可能下载速度略慢,我们可以自己换成国内的源,比如163等.比如配置163的yum源:1.先删除默认源文件dvd.repo # rm -f /etc/y ...

  5. ClassNotFoundException------我有一句妈卖批一定要讲

    最近在写<Writing Compilers and Interpreters>一书的代码,本来打算用vim敲代码,一来每个字母都要自己敲,而来就当练习vim,但是感觉真是太不方便了,各种 ...

  6. python基础知识第一篇(认识Python)

    开发语言: 高级语言:python java php c++ 生成的字节码 字节码转换为机器码 计算机识别运行 低级语言:C 汇编 生成的机器码 PHP语言:适用于网页,局限性 Python,Java ...

  7. vue中子组件直接修改父组件prop属性bug

    在有些时候,子组件直接修改父组件传来的 prop 对象的属性会出现不同步的问题. 比如,父组件传过来的一个对象 checkBoxObj: checkBoxObj:{ checked: false } ...

  8. Winform中实现将照片剪贴到系统剪切板中(附代码下载)

    场景 效果 点击剪切按钮 点击粘贴按钮 注: 博客主页: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免 ...

  9. 消息队列MQ简介

    项目中要用到RabbitMQ,领导让我先了解一下.在之前的公司中,用到过消息队列MQ,阿里的那款RocketMQ,当时公司也做了简单的技术分享,自己也看了一些博客.自己在有道云笔记上,做了一些整理,但 ...

  10. maven的下载、安装及配置

    一.下载maven 1. maven的下载路径 (1)Apache官网:https://maven.apache.org (2)https://pan.baidu.com/s/1Yvv44ICGSxG ...