一、问题由来

最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下:

在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值。如下:

    分类变量(定性特征)与连续变量(定量特征)。我们训练模型的变量,一般分为两种形式。以广告收入增长率为例,如果取值为0-1之间任意数,则此时变量为连续变量。如果把增长率进行分段处理,表示成如下形式:[0,0.3],(0.3,0.6],(0.6,1],那么此时变量为分类变量。

    特征转换。对于分类变量,建模时要进行转换,通常直接转换为数字。比如将[0,0.3],(0.3,0.6],(0.6,1]表示为0,1,2。原因主要有两点:

      1,转换后可以提高模型运算效率。

      2,对于一些模型,比如逻辑回归或计算距离时,无法对分类值直接进行计算。

直接转换为数字,也会带来一些问题:

      1,转换为数字后,默认为连续变量,违背最初设计,影响效率。

      2,转换后的值会影响同一特征在样本中的权重。比如转换为1000和转换为1对模型影响明显不同。

      因此,需要更好的编码方式对特征进行转换。

    one-hot编码。one-hot编码的定义是用N位状态寄存器来对N个状态进行编码。比如上面的例子[0,0.3],(0.3,0.6],(0.6,1],有3个分类值,因此N为3,对应的one-hot编码可以表示为100,010,001。

    使用步骤:比如用LR算法做模型,在数据处理过程中,可以先对连续变量进行离散化处理,然后对离散化后数据进行one-hot编码,最后放入LR模型中。这样可以增强模型的非线性能力。

    再看一个sklearn的例子:

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) # fit来学习编码
enc.transform([[0, 1, 3]]).toarray() # 进行编码

输出:array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

数据矩阵是4*3,即4个数据,3个特征维度。

0 0 3                             观察左边的数据矩阵,第一列为第一个特征维度,有两种取值0\1. 所以对应编码方式为10 、01

1 1 0                                               同理,第二列为第二个特征维度,有三种取值0\1\2,所以对应编码方式为100、010、001

     0 2 1                                               同理,第三列为第三个特征维度,有四种取值0\1\2\3,所以对应编码方式为1000、0100、0010、0001

     1 0 2

再来看要进行编码的参数[0 , 1,  3], 0作为第一个特征编码为10,  1作为第二个特征编码为010, 3作为第三个特征编码为0001.  故此编码结果为 1 0 0 1 0 0 0 0 1

二. 为什么要独热编码?

独热编码(是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到原点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

再贴出某位大佬的解释:使用one-hot的直接原因是现在多分类cnn网络的输出通常是softmax层,而它的输出是一个概率分布,从而要求输入的标签也以概率分布的形式出现,进而计算交叉熵之类。one-hot其实就是给出了真实样本的真实概率分布,其中一个样本数据概率为1,其他全为0.。计算损失交叉熵时,直接用1*log(1/概率),就直接算出了交叉熵,作为损失。

为什么特征向量要映射到欧式空间?

将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

三 .独热编码的优缺点

  • 优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  • 缺点:当类别的数量很多时,特征空间会变得非常大,成为一个高维稀疏矩阵。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

四. 什么情况下(不)用独热编码?

  • 用:独热编码用来解决类别型数据的离散值问题,
  • 不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。  Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。

  总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。

五.  什么情况下(不)需要归一化?

  • 需要: 基于参数的模型或基于距离的模型,都是要进行特征的归一化。
  • 不需要:基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。

数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?的更多相关文章

  1. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  2. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  3. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  4. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  5. 数据预处理之独热编码(One-Hot Encoding)(转载)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  6. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  7. 机器学习:数据预处理之独热编码(One-Hot)

    前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...

  8. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  9. Scikit-learn库中的数据预处理:独热编码(二)

    在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为 ...

随机推荐

  1. 升级PHPstudy自带的mysql版本 从5.5升级到5.7.22

    原文:升级PHPstudy自带的mysql版本 从5.5升级到5.7.22 版权声明:请注意:如需转载请注明出处. https://blog.csdn.net/qq_32534555/article/ ...

  2. C++异常机制的实现方式和开销分析 (大图,编译器会为每个函数增加EHDL结构,组成一个单向链表,非常著名的“内存访问违例”出错对话框就是该机制的一种体现)

    白杨 http://baiy.cn 在我几年前开始写<C++编码规范与指导>一文时,就已经规划着要加入这样一篇讨论 C++ 异常机制的文章了.没想到时隔几年以后才有机会把这个尾巴补完 :- ...

  3. dumpbin判断windows程序是32还是64位(包括DLL)

    http://blog.csdn.net/csfreebird/article/details/10105681 dumpbin /HEADERS gdal18.dll(or xxx.exe) 如果安 ...

  4. Introduction To The Smart Client Software Factory (CAB/SCSF Part 18)

    1. Shell This is the start-up project for the solution. It is very similar to the start-up projects ...

  5. 修改window.external使JS可调用Delphi方法

    原文地址:http://hi.baidu.com/rarnu/blog/item/4ec80608022766d663d986ea.html 在js中,有一个比较特殊的对象,即window.exter ...

  6. C# 获得设备usb信息

    原文:C# 获得设备usb信息 本文告诉大家如何获得设备的usb来进行判断是否有哪些usb和找不到usb可能是什么. 需要在项目右击引用,点击程序集,搜索 System.Management 然后安装 ...

  7. 【Git】文件暂存与提交

    git工作目录文件的两种状态:已跟踪.未跟踪. 文件状态的变化周期: 查看当前文件状态: git status 跟踪新文件/暂存已修改文件 git add newfile 状态简览 git statu ...

  8. Android零基础入门第53节:拖动条SeekBar和星级评分条RatingBar

    原文:Android零基础入门第53节:拖动条SeekBar和星级评分条RatingBar 前面两期都在学习ProgressBar的使用,关于自定义ProgressBar的内容后期会继续学习的,本期先 ...

  9. SharePoint Add-in Model 介绍 - 引文(先导篇)

    1. SharePoint 平台 如果你已经很熟悉 SharePoint 平台,可跳过本章节. 1.1 SharePoint 是什么 在介绍 Add-in Model 之前,简要提一下 SharePo ...

  10. QString之simplified()用于读取数据、规范数据,非常方便

    在工程项目开发中,遇到这么个问题:手工计入文件中的数据,每行有三个,前两个是数字,最后一个是标识,现在把这3个数据提取出来. 一提取就出现问题了:由于手工导入,数据间使用空白间隔,有可能是一个空格,有 ...