lightoj 1044 - Palindrome Partitioning(需要优化的区间dp)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1044
题意:求给出的字符串最少能分成多少串回文串。
一般会想到用区间dp暴力3个for但是这里的数据有1000,3个for肯定超时的。
但是这题只是判断回文串有多少个所以可以先预处理一下[i,j]是不是回文,然后
就是简单dp了
for(int i = 1 ; i <= len ; i++) {
ans[i] = ans[i - 1] + 1;
for(int j = i - 1 ; j >= 1 ; j--) {
if(dp[j][i]) {
ans[i] = min(ans[i] , ans[j - 1] + 1);//如果[i,j]是回文那么就是ans[j-1]+1
}
}
}
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int dp[1010][1010] , ans[1010];
char s[1010];
int main() {
int t , cnt = 0;
scanf("%d" , &t);
while(t--) {
cnt++;
scanf("%s" , s + 1);
int len = strlen(s + 1);
memset(dp , 0 , sizeof(dp));
memset(ans , 0 , sizeof(ans));
for(int k = 0 ; k <= len ; k++) {
for(int l = 1 ; l <= len && l + k <= len ; l++) {
int r = l + k;
if(s[l] == s[r]) {
if(k == 0 || k == 1) {
dp[l][r] = 1;
}
else {
if(dp[l + 1][r - 1]) {
dp[l][r] = 1;
}
}
}
else {
dp[l][r] = 0;
}
}
}
for(int i = 1 ; i <= len ; i++) {
ans[i] = ans[i - 1] + 1;
for(int j = i - 1 ; j >= 1 ; j--) {
if(dp[j][i]) {
ans[i] = min(ans[i] , ans[j - 1] + 1);
}
}
}
printf("Case %d: %d\n" , cnt , ans[len]);
}
return 0;
}
lightoj 1044 - Palindrome Partitioning(需要优化的区间dp)的更多相关文章
- Lightoj 1044 - Palindrome Partitioning (DP)
题目链接: Lightoj 1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...
- LightOJ 1044 Palindrome Partitioning(简单字符串DP)
A palindrome partition is the partitioning of a string such that each separate substring is a palind ...
- 1044 - Palindrome Partitioning(区间DP)
题目大意: 给你一个字符串,问这个字符串最少有多少个回文串. 区间DP直接搞 #include<cstdio> #include<cstring> #include&l ...
- Light oj 1044 - Palindrome Partitioning(区间dp)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1044 dp[i][j]表示i到j直接的最小回文区间个数,直接看代码 #include ...
- poj3280 Cheapest Palindrome(回文串区间dp)
https://vjudge.net/problem/POJ-3280 猛刷简单dp第一天第三题. 这个据说是[求字符串通过增减操作变成回文串的最小改动次数]的变体. 首先增减操作的实质是一样的,所以 ...
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- 区间dp(入门题)
区间dp:顾名思义就是在区间上进行动态规划,通过合并小区间求解一段区间上的最优解. 常见模板: for(int len=1;len<n;len++){//区间长度 for(int be=1;be ...
- 石子合并——区间dp
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...
- Palindrome Partitioning LightOJ - 1044(回文串最小分割数,O(n^2)预处理子串是否回文)
题意:将一个字符串分割成最少的字符串,使得分割出的每个字符串都是回文串.输出最小的分割数. 方法(自己的):先O(n^2)(用某个点或某个空区间开始,每次向左右扩展各一个的方法)处理出所有子串是否回文 ...
随机推荐
- python多线程详解
目录 python多线程详解 一.线程介绍 什么是线程 为什么要使用多线程 二.线程实现 threading模块 自定义线程 守护线程 主线程等待子线程结束 多线程共享全局变量 互斥锁 递归锁 信号量 ...
- KD-tree 专题「Hide and Seek · 巧克力王国」
Lockey的瞎理解 抄了一遍板子又水了俩题,感觉对KD-tree 稍稍理解了一点儿,唠叨一下(二维的KD-tree),如有错误请指出(Lockey 洗脸恭听) 普通平衡树维护的是一维的序列,但对于二 ...
- 使用vue实现行列转换的一种方法。
行列转换是一个老生常谈的问题,这几天逛知乎有遇到了这个问题.一个前端说,拿到的数据是单列的需要做转换才能够绑定,折腾了好久才搞定,还说这个应该后端直接出数据,不应该让前端折腾. 这个嘛,行列转换在后端 ...
- PythonDay04
## 第四章 ### 今日内容 - 列表- 元组- range ### 列表 列表相比于字符串,不仅可以储存不同的数据类型,而且可以储存大量数据,是一种可变的数据类型 64位python的限制是 11 ...
- npm 一些有用的提示和技巧
生成 package.json 我们通常执行 npm init,然后开始添加 npm 请求的信息. 但是,如果我们不关心所有这些信息,并且希望保留默认值,那么对于 npm 请求的每一条数据,我们都按 ...
- opencv图像直方图均衡化及其原理
直方图均衡化是什么有什么用 先说什么是直方图均衡化,通俗的说,以灰度图为例,原图的某一个像素为x,经过某个函数变为y.形成新的图.新的图的灰度值的分布是均匀的,这个过程就叫直方图均衡化. 图像直方图均 ...
- 一文读懂JS中的原型和原型链(图解)
讲原型的时候,我们应该先要记住以下几个要点,这几个要点是理解原型的关键: 1.所有的引用类型(数组.函数.对象)可以自由扩展属性(除null以外). 2.所有的引用类型都有一个’_ _ proto_ ...
- 以kaldi中的yesno为例谈谈transition
在基于GMM-HMM的传统语音识别里,比音素(phone)更小的单位是状态(state).一般每个音素由三个状态组成,特殊的是静音(SIL)由五个状态组成.这里所说的状态就是指HMM里的隐藏的状态,而 ...
- iText实现pdf导出
/** * AsianTest.java */ import java.io.FileOutputStream; import java.io.IOException; import com.lowa ...
- (二)对象以及变量的并发访问--synchronized的使用细节,用法
具体的记录synchronized关键的各种使用方式,注意事项.感觉一步一步跟我来都可以看懂滴 大致是按照以下思路进行书写的.黑体字可以理解为结论, 1.synchronized锁的是什么? 2.sy ...