博客:blog.shinelee.me | 博客园 | CSDN

权重初始化最佳实践

书接上回,全0、常数、过大、过小的权重初始化都是不好的,那我们需要什么样的初始化?

  • 因为对权重\(w\)的大小和正负缺乏先验,所以应初始化在0附近,但不能为全0或常数,所以要有一定的随机性,即数学期望\(E(w)=0\)
  • 因为梯度消失和梯度爆炸,权重不易过大或过小,所以要对权重的方差\(Var(w)\)有所控制

  • 深度神经网络的多层结构中,每个激活层的输出对后面的层而言都是输入,所以我们希望不同激活层输出的方差相同,即\(Var(a^{[l]})=Var(a^{[l-1]})\),这也就意味不同激活层输入的方差相同,即\(Var(z^{[l]})=Var(z^{[l-1]})\);
  • 如果忽略激活函数,前向传播和反向传播可以看成是权重矩阵(转置)的连续相乘。数值太大,前向时可能陷入饱和区,反向时可能梯度爆炸,数值太小,反向时可能梯度消失。所以初始化时,权重的数值范围(方差)应考虑到前向和后向两个过程

权重的随机初始化过程可以看成是从某个概率分布随机采样的过程,常用的分布有高斯分布、均匀分布等,对权重期望和方差的控制可转化为概率分布的参数控制,权重初始化问题也就变成了概率分布的参数设置问题

在上回中,我们知道反向传播过程同时受到权重矩阵和激活函数的影响,那么,在激活函数不同以及每层超参数配置不同(输入输出数量)的情况下,权重初始化该做怎样的适配?这里,将各家的研究成果汇总如下,

其中,扇入\(fan\_in\)和扇出\(fan\_out\)分别为当前全连接层的输入和输出数量,更准确地说,1个输出神经元与\(fan\_in\)个输入神经元有连接(the number of connections feeding into the node),1个输入神经元与\(fan\_out\)个输出神经元有连接(the number of connections flowing out of the node),如下图所示(来自链接),

对于卷积层而言,其权重为\(n\)个\(c\times h \times w\)大小的卷积核,则一个输出神经元与\(c\times h \times w\)个输入神经元有连接,即\(fan\_in = c\times h \times w\),一个输入神经元与\(n\times h \times w\)个输出神经元有连接,即\(fan\_out=n\times h \times w\)。

期望与方差的相关性质

接下来,首先回顾一下期望与方差计算的相关性质。

对于随机变量\(X\),其方差可通过下式计算,
\[
Var(X) = E(X^2) - (E(X))^2
\]
若两个随机变量\(X\)和\(Y\),它们相互独立,则其协方差为0,
\[
Cov(X, Y) = 0
\]
进一步可得\(E(XY)=E(X)E(Y)\),推导如下,
\[
\begin{align} Cov(X, Y) &= E((X-E(X))(Y-E(Y))) \\
&= E(XY)-E(X)E(Y) =0 \end{align}
\]
两个独立随机变量和的方差,
\[
\begin{aligned} \operatorname{Var}(X+Y) &=E\left((X+Y)^{2}\right)-(E(X+Y))^{2} \\ &=E\left(X^{2}+Y^{2}+2 X Y\right)-(E(X)+E(Y))^{2} \\ &=\left(E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X Y)\right)-\left((E(X))^{2}+(E(Y))^{2}+2 E(X) E(Y)\right) \\ &=\left(E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X) E(Y)\right)-\left((E(X))^{2}+(E(Y))^{2}+2 E(X) E(Y)\right) \\ &=E\left(X^{2}\right)-(E(X))^{2}+E\left(Y^{2}\right)-(E(Y))^{2} \\ &=\operatorname{Var}(X)+\operatorname{Var}(Y) \end{aligned}
\]
两个独立随机变量积的方差,
\[
\begin{aligned} \operatorname{Var}(X Y) &=E\left((X Y)^{2}\right)-(E(X Y))^{2} \\ &=E\left(X^{2}\right) E\left(Y^{2}\right)-(E(X) E(Y))^{2} \\ &=\left(\operatorname{Var}(X)+(E(X))^{2}\right)\left(\operatorname{Var}(Y)+(E(Y))^{2}\right)-(E(X))^{2}(E(Y))^{2} \\ &=\operatorname{Var}(X) \operatorname{Var}(Y)+(E(X))^{2} \operatorname{Var}(Y)+\operatorname{Var}(X)(E(Y))^{2} \end{aligned}
\]

全连接层方差分析

对线性组合层+非线性激活层,计算如下所示,其中\(z_i^{[l-1]}\)为\(l-1\)层第\(i\)个激活函数的输入,\(a_i^{[l-1]}\)为其输出,\(w_{ij}^{[l]}\)为第\(l\)层第\(i\)个输出神经元与第\(j\)个输入神经元连接的权重,\(b^{[l]}\)为偏置,计算方式如下
\[
\begin{align}a_i^{[l-1]} &= f(z_i^{[l-1]}) \\z_i^{[l]} &= \sum_{j=1}^{fan\_in} w_{ij}^{[l]} \ a_j^{[l-1]}+b^{[l]} \\a_i^{[l]} &= f(z_i^{[l]})\end{align}
\]
在初始化阶段,将每个权重以及每个输入视为随机变量,可做如下假设和推断,

  • 网络输入的每个元素\(x_1, x_2, \dots\)为独立同分布
  • 每层的权重随机初始化,同层的权重$w_{i1}, w_{i2}, \dots \(**独立同分布**,且期望\)E(w)=0$;
  • 每层的权重\(w\)和输入\(a\)随机初始化且相互独立,所以两者之积构成的随机变量\(w_{i1}a_1, w_{i2}a_2, \dots\)亦相互独立,且同分布;
  • 根据上面的计算公式,同层的\(z_1, z_2, \dots\)为独立同分布,同层的\(a_1, a_2, \dots\)也为独立同分布

需要注意的是,上面独立同分布的假设仅在初始化阶段成立,当网络开始训练,根据反向传播公式,权重更新后不再相互独立。

在初始化阶段,输入\(a\)与输出\(z\)方差间的关系如下,令\(b=0\),
\[
\begin{align}
Var(z) &=Var(\sum_{j=1}^{fan\_in} w_{ij} \ a_j) \\
&= fan\_in \times (Var(wa)) \\
&= fan\_in \times (Var(w) \ Var(a) + E(w)^2 Var(a) + Var(w) E(a)^2) \\
&= fan\_in \times (Var(w) \ Var(a) + Var(w) E(a)^2)
\end{align}
\]

tanh下的初始化方法

若激活函数为线性恒等映射,即\(f(x)=x\),则\(a = z\),自然\(E(a)=E(z)\),\(Var(a) = Var(z)\)。

因为网络输入的期望\(E(x)=0\),每层权重的期望\(E(w) = 0\),在前面相互独立的假设下,根据公式\(E(XY)=E(X)E(Y)\),可知\(E(a)=E(z)=\sum E(wa)=\sum E(w)E(a)=0\)。由此可得,
\[
Var(a^{[l]}) = Var(z^{[l]}) = fan\_in \times Var(w) \times Var(a^{[l-1]})
\]
更进一步地,令\(n^{[l]}\)为第\(l\)层的输出数量(\(fan\_out\)),则第\(l\)层的输入数量($fan_in \()即前一层的输出数量为\)n^{[l-1]}\(。第\)L$层输出的方差为
\[
\begin{align}
Var(a^{L}) = Var(z^{[L]}) &= n^{[L-1]} Var(w^{[L]}) Var(a^{[L-1]}) \\
&=\left[\prod_{l=1}^{L} n^{[l-1]} Var(w^{[l]})\right] {Var}(x)
\end{align}
\]
反向传播时,需要将上式中的\(n^{[l-1]}\)替换为\(n^{[l]}\)(即\(fan\_in\)替换为\(fan\_out\)),同时将\(x\)替换为损失函数对网络输出的偏导。

所以,经过\(t\)层,前向传播和反向传播的方差,将分别放大或缩小
\[
\prod^{t} n^{[l-1]} Var(w^{[l]}) \\
\prod^{t} n^{[l]} Var(w^{[l]})
\]
为了避免梯度消失和梯度爆炸,最好保持这个系数为1。

需要注意的是,上面的结论是在激活函数为恒等映射的条件下得出的,而tanh激活函数在0附近可近似为恒等映射,即$tanh(x) \approx x $。

Lecun 1998

Lecun 1998年的paper Efficient BackProp ,在输入Standardization以及采用tanh激活函数的情况下,令\(n^{[l-1]}Var(w^{[l]})=1\),即在初始化阶段让前向传播过程每层方差保持不变,权重从如下高斯分布采样,其中第\(l\)层的\(fan\_in = n^{[l-1]}\),
\[
W \sim N(0, \frac{1}{fan\_in})
\]

Xavier 2010

在paper Xavier-2010-Understanding the difficulty of training deep feedforward neural networks中,Xavier和Bengio同时考虑了前向过程和反向过程,使用\(fan\_in\)和\(fan\_out\)的平均数对方差进行归一化,权重从如下高斯分布中采样,
\[
W \sim N(0, \frac{2}{fan\_in + fan\_out})
\]
同时文章中还提及了从均匀分布中初始化的方法,因为均匀分布的方差与分布范围的关系为
\[
Var(U(-n, n)) = \frac{n^2}{3}
\]
若令\(Var(U(-n, n)) = \frac{2}{fan\_in + fan\_out}\),则有
\[
n = \frac{\sqrt{6}}{\sqrt{fan\_in + fan\_out}}
\]
即权重也可从如下均匀分布中采样,
\[
W \sim U(-\frac{\sqrt{6}}{\sqrt{fan\_in + fan\_out}}, \frac{\sqrt{6}}{\sqrt{fan\_in + fan\_out}})
\]
在使用不同激活函数的情况下,是否使用Xavier初始化方法对test error的影响如下所示,图例中带\(N\)的表示使用Xavier初始化方法,Softsign一种为类tanh但是改善了饱和区的激活函数,图中可以明显看到tanh 和tanh N在test error上的差异。

论文还有更多训练过程中的权重和梯度对比图示,这里不再贴出,具体可以参见论文。

ReLU/PReLU下的初始化方法

搬运一下上面的公式,
\[
Var(z)= fan\_in \times (Var(w) \ Var(a) + Var(w) E(a)^2)
\]
因为激活函数tanh在0附近可近似为恒等映射,所以在初始化阶段可以认为\(E(a) = 0\),但是对于ReLU激活函数,其输出均大于等于0,不存在负数,所以\(E(a) = 0\)的假设不再成立。

但是,我们可以进一步推导得到,
\[
\begin{align}
Var(z) &= fan\_in \times (Var(w) \ Var(a) + Var(w) E(a)^2) \\
&= fan\_in \times (Var(w) (E(a^2) - E(a)^2)+Var(w)E(a)^2) \\
&= fan\_in \times Var(w) \times E(a^2)
\end{align}
\]

He 2015 for ReLU

对于某个具体的层\(l\)则有,
\[
Var(z^{[l]}) = fan\_in \times Var(w^{[l]}) \times E((a^{[l-1]})^2)
\]
如果假定\(w{[l-1]}\)来自某个关于原点对称的分布,因为\(E(w^{[l-1]}) = 0\),且\(b^{[l-1]} = 0\),则可以认为\(z^{[l-1]}\)分布的期望为0,且关于原点0对称。

对于一个关于原点0对称的分布,经过ReLU后,仅保留大于0的部分,则有
\[
\begin{align}Var(x) &= \int_{-\infty}^{+\infty}(x-0)^2 p(x) dx \\&= 2 \int_{0}^{+\infty}x^2 p(x) dx \\&= 2 E(\max(0, x)^2)\end{align}
\]
所以,上式可进一步得出,
\[
\begin {align}Var(z^{[l]}) &= fan\_in \times Var(w^{[l]}) \times E((a^{[l-1]})^2) \\&= \frac{1}{2} \times fan\_in \times Var(w^{[l]}) \times Var(z^{[l-1]}) \end{align}
\]
类似地,需要放缩系数为1,即
\[
\frac{1}{2} \times fan\_in \times Var(w^{[l]}) = 1 \\
Var(w) = \frac{2}{fan\_in}
\]
即从前向传播考虑,每层的权重初始化为
\[
W \sim N(0, \frac{2}{fan\_in})
\]
同理,从后向传播考虑,每层的权重初始化为
\[
W \sim N(0, \frac{2}{fan\_out})
\]
文中提到,单独使用上面两个中的哪一个都可以,因为当网络结构确定之后,两者对方差的放缩系数之比为常数,即每层扇入扇出之比的连乘,解释如下,

使用Xavier和He初始化,在激活函数为ReLU的情况下,test error下降对比如下,22层的网络,He的初始化下降更快,30层的网络,Xavier不下降,但是He正常下降。

He 2015 for PReLU

对于PReLU激活函数,负向部分为\(f(x) = ax\),如下右所示,

对于PReLU,求取\(E((a^{[l-1]})^2)\)可对正向和负向部分分别积分,不难得出,
\[
\frac{1}{2} (1 + a^2) \times fan\_in \times Var(w^{[l]}) = 1 \\Var(w) = \frac{2}{(1 + a^2) fan\_in} \\W \sim N(0, \frac{2}{(1 + a^2) fan\_in}) \\W \sim N(0, \frac{2}{(1 + a^2) fan\_out})
\]

caffe中的实现

尽管He在paper中说单独使用\(fan\_in\)或\(fan\_out\)哪个都可以,但是,在Caffe的实现中,还是提供了两者平均值的方式,如下所示,当然默认是使用\(fan\_in\)。

小结

至此,对深度神经网络权重初始化方法的介绍已告一段落。虽然因为BN层的提出,权重初始化可能已不再那么紧要。但是,对经典权重初始化方法经过一番剖析后,相信对神经网络运行机制的理解也会更加深刻。

以上。

参考

网络权重初始化方法总结(下):Lecun、Xavier与He Kaiming的更多相关文章

  1. 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)

    Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...

  2. Linux 下网络性能优化方法简析

    概述 对于网络的行为,可以简单划分为 3 条路径:1) 发送路径,2) 转发路径,3) 接收路径,而网络性能的优化则可基于这 3 条路径来考虑.由于数据包的转发一般是具备路由功能的设备所关注,在本文中 ...

  3. 深度学习----Xavier初始化方法

    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...

  4. 深度学习——Xavier初始化方法

    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...

  5. 深度学习的Xavier初始化方法

    在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...

  6. Linux下多网卡同网段多IP网络分流设定方法

    Linux下多网卡同网段多IP网络分流设定方法 -- :: 标签:Linux下多网卡同网段多IP网络分流设定方法 当服务器需要较高的网络流量时,在其它资源不造成瓶颈的情况下无疑会用到多网卡. 第1选项 ...

  7. Android 下使用tcpdump网络抓包方法

    Android 下使用tcpdump网络抓包方法 抓包需要tcpdump以及Root权限,tcpdump在本文后有下载. 首先把tcpdump传进手机,用adb命令(放SD卡有时会有问题,我一次可以用 ...

  8. pytroch 权重初始化和加载词向量的方法

    1.几种不同的初始化方法 import torch.nn as nn embedding = torch.Tensor(3, 5) #如下6种初始化方法 #正态分布 nn.init.normal_(e ...

  9. PyTorch常用参数初始化方法详解

    1. 均匀分布 torch.nn.init.uniform_(tensor, a=0, b=1) 从均匀分布U(a, b)中采样,初始化张量. 参数: tensor - 需要填充的张量 a - 均匀分 ...

随机推荐

  1. 如何通过 Docker 部署 Logstash 同步 Mysql 数据库数据到 ElasticSearch

    在开发过程中,我们经常会遇到对业务数据进行模糊搜索的需求,例如电商网站对于商品的搜索,以及内容网站对于内容的关键字检索等等.对于这些高级的搜索功能,显然数据库的 Like 是不合适的,通常我们采用 E ...

  2. 简单理解TCP通信的三次握手

    TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接. 位码(可以理解为请求状态): 有6种标示:SYN(synchronous建立联机) ACK(acknowledg ...

  3. eclipse 中配置maven环境

    选择 菜单栏 window -preferences-maven- installations 点击add 添加自己的maven 库 配置 setting 第一个为全局配置 第二个为用户配置可以覆盖全 ...

  4. python3 requests_html 爬取智联招聘数据(简易版)

    PS重点:我回来了-----我回来了-----我回来了 1. 基础需要: python3 基础 html5 CS3 基础 2.库的选择: 原始库  urllib2  (这个库早些年的用过,后来淡忘了) ...

  5. (三)Kinect姿势识别

    Kinect给我们内置了许多姿势如举手等,具体可参考枚举KinectGestures.Gestures,也可以通过Kinect姿势管理器,自定义姿势导入(坑较多,内置的基本够用了)也可以根据关节坐标自 ...

  6. vue表单属性

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. Docker 实战—使用 Dockerfile 构建镜像

    Dockerfile 指令详解请访问:https://www.cnblogs.com/cloudfloating/p/11737447.html 使用 Alpine Linux 作为基础镜像 Alpi ...

  8. 明解C语言 入门篇 第三章答案

    练习3-1 #include <stdio.h> int main() { int x; int y; puts("请输入两个整数."); printf("整 ...

  9. Flask数据库基本操作

    数据库基本操作 在Flak-SQLAlchemy中,插入.修改.删除操作,均由数据库会话管理. 会话用db.session表示.在准备把数据写入数据库前,需要先将数据添加到会话中然后调用commit( ...

  10. 前端技术之:使用npx创建一个Nuxt.js项目

    $ npx create-nuxt-app my-first-nuxtjs npx: 401 安装成功,用时 43.891 秒 > Generating Nuxt.js project in / ...