python_07
破解极限滑动认证
from selenium import webdriver
from selenium.webdriver import ActionChains
from PIL import Image
import time
import random # 截取图片函数
def cut_image(driver):
driver.save_screenshot('image.png') img = driver.find_element_by_class_name('geetest_canvas_img') left = img.location['x']
upper = img.location['y'] right = left + img.size['width']
lower = upper + img.size['height'] image_obj = Image.open('image.png')
img_cut = image_obj.crop((left, upper, right, lower))
# img_cut.show()
return img_cut # 得到完整图片
def get_image1(driver): js_code = '''
var x = document.getElementsByClassName('geetest_canvas_fullbg')[0].style.display="block";
console.log(x)
''' time.sleep(0.2)
driver.execute_script(js_code) time.sleep(0.2)
img1 = cut_image(driver) return img1 # 得到缺口图片
def get_image2(driver):
js_code = '''
var x = document.getElementsByClassName('geetest_canvas_fullbg')[0].style.display="none";
console.log(x)
''' time.sleep(0.2)
driver.execute_script(js_code) time.sleep(0.2)
img2 = cut_image(driver) return img2 # 对比图片,得到滑动距离
def get_distance(img1, img2): # 小滑块右侧位置
start_location = 60 # 像素差
threshold = 60 for i in range(start_location, img1.size[0]):
for j in range(img1.size[1]): # 获得点(i,j)处的RGB像素值
rgb1 = img1.load()[i, j]
rgb2 = img2.load()[i, j]
r = abs(rgb1[0] - rgb2[0])
g = abs(rgb1[1] - rgb2[1])
b = abs(rgb1[2] - rgb2[2]) if not (r < threshold and g < threshold and b < threshold):
# 有误差,减去7
return i-7 def get_tracks(distance):
distance += 20
v0 = 0
a_list = [3, 4, 5]
t = 0.2
s = 0 # 向前滑动轨迹
forward_tracks = []
mid = distance * 3 / 5
while s < distance:
if s < mid:
a = a_list[random.randint(0, 2)]
else:
a = -a_list[random.randint(0, 2)] v = v0
stack = v * t + 0.5 * a * (t ** 2) # 每次拿到的位移
stack = round(stack)
s += stack
v0 = v + a * t forward_tracks.append(stack) back_tracks = [-1, -1, -2, -3, -2, -3, -2, -2, -3, -1] return {'forward_tracks': forward_tracks, 'back_tracks': back_tracks} def main(user, pwd): driver = webdriver.Chrome()
driver.maximize_window() try:
driver.implicitly_wait(10)
driver.get('https://account.cnblogs.com/signin?returnUrl=https%3A%2F%2Fwww.cnblogs.com%2F') username = driver.find_element_by_id('LoginName')
username.send_keys(user)
time.sleep(1) password = driver.find_element_by_id('Password')
password.send_keys(pwd)
time.sleep(1) submit = driver.find_element_by_id('submitBtn')
submit.click()
time.sleep(1) # 获取完整图片
img1 = get_image1(driver) # 获取缺口图片
img2 = get_image2(driver) # 获取移动距离
distance = get_distance(img1, img2) # 获取滑动轨迹,模拟人的滑动轨迹
tracks = get_tracks(distance) button = driver.find_element_by_class_name('geetest_slider_button')
ActionChains(driver).click_and_hold(button).perform() for forward_track in tracks['forward_tracks']:
ActionChains(driver).move_by_offset(xoffset=forward_track, yoffset=0).perform()
time.sleep(0.2) for back_track in tracks['back_tracks']:
ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
time.sleep(0.1) ActionChains(driver).release().perform()
time.sleep(3)
finally:
driver.close() if __name__ == '__main__': user = '********'
pwd = '****************'
main(user, pwd)
python_07的更多相关文章
- python_07 函数作用域、匿名函数
函数的作用域:无论在哪个地方调用函数,函数运行过程中的作用域只跟定义的时候有关,跟在哪个地方调用无关. name='alex' def foo(): name = 'linhaifeng' def b ...
随机推荐
- c#菜单动态合并
说明 在程序中经常使用弹出菜单,并且一个窗体中可以存在多个弹出菜单.开发过MDI窗体的读者可能都知道,当MDI子窗体最大化时,子窗体和主窗体的菜单能够自动的合并.这是如何实现的呢?本例实现了将两个弹出 ...
- git jenkins 基本部署 jenkins持续集成
1.什么是持续集成? 持续集成来简化我们的工作 还能让产品可以快速迭代,同时还能保持代码高质量产出.2.Jenkins的安装配置: [root@jenkins ~]# yum inst ...
- Leetcode(3)无重复字符的最长子串
Leetcode(3)无重复字符的最长子串 [题目表述]: 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. 第一种方法:暴力 执行用时:996 ms: 内存消耗:12.9MB 效果: ...
- centos7将python默认版本升级
想用centos7来写python,但是默认安装的是python2.7(python -v命令可以查看版本信息) 准备升级到python3.5.2 首先安装编译环境 yum -y install gc ...
- 关于kaggle注册无法显示人机验证码问题
最近准备做项目,需要在kaggle上下载数据集,但注册时遇到了无法显示验证图片信息的问题,我也是通过百度最终找到解决方法,所以就准备记录下来啦:下面是解决步骤: step1:下载Google访问助手 ...
- nodejs sql --- 添加事务
添加事务 let transaction; try { transaction = await this.ctx.model.transaction(); await this.ctx.model.C ...
- Jenkins流水线获取提交日志
写在前 之前使用Jenkins pipeline的时候发现拿不到日志,使用multiple scms插件对应是日志变量获取日志的方式失效了, 但是查看流水线Pipeline Syntax发现check ...
- MIT线性代数:3.矩阵相乘
- st表复习笔记
st表,一种高效的区间最值查询(RMQ)算法.本质其实是一个动态规划. 其实吧,对于看过线性dp的人来说应该不难理解,只是处理有些麻烦.但是本土狗因为-1的问题居然改了许久... 用两个2^i的区间把 ...
- Project Euler 55: Lychrel numbers
五十五.吕克雷尔数(Lychrel numbers) 如果我们把\(47\)翻转过来并和其自身相加,结果是\(47+74=121\)是一个回文数.并不是所有的数都可以这么快的变成回文数,比如说: \[ ...