树的重心

何谓重心

树的重心:找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡。

树的重心可以通过简单的两次搜索求出,第一遍搜索求出每个结点的子结点数量son[u],第二遍搜索找出使max{son[u],n-son[u]-1}最小的结点。

实际上这两步操作可以在一次遍历中解决。对结点u的每一个儿子v,递归的处理v,求出son[v],然后判断是否是结点数最多的子树,处理完所有子结点后,判断u是否为重心。

以牛客的一道题:A病毒感染:https://www.nowcoder.com/acm/contest/214/A

//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
int minn = inf;
int n,m;
const int maxn = ;
vector<int>mp[maxn];
int dp[maxn],d[maxn];
void dfs(int u,int fa){
dp[u] = ;
d[u] = ;
for(int i=; i<mp[u].size(); i++){
int v = mp[u][i];
if(v == fa)continue;
dfs(v, u);
dp[u] += dp[v];
d[u] = max(d[u], dp[v]);
} d[u] = max(d[u], n - dp[u]);
minn = min(minn, d[u]);
}
int main(){
scanf("%d%d", &n, &m);
for(int i=; i<=m; i++){
int u,v;
scanf("%d%d", &u, &v);
mp[u].pb(v); mp[v].pb(u);
}
dfs(, -);
// debug(minn);
for(int i=; i<=n; i++){
if(d[i] == minn){printf("%d ", i);}
}
printf("\n");
return ;
}

求树的重心 DFS的更多相关文章

  1. 求树的重心(POJ1655)

    题意:给出一颗n(n<=2000)个结点的树,删除其中的一个结点,会形成一棵树,或者多棵树,定义删除任意一个结点的平衡度为最大的那棵树的结点个数,问删除哪个结点后,可以让平衡度最小,即求树的重心 ...

  2. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  3. POJ 1655 求树的重心

    POJ 1655 [题目链接]POJ 1655 [题目类型]求树的重心 &题意: 定义平衡数为去掉一个点其最大子树的结点个数,求给定树的最小平衡数和对应要删的点.其实就是求树的重心,找到一个点 ...

  4. 洛谷P1395 会议(CODEVS.3029.设置位置)(求树的重心)

    To 洛谷.1395 会议 To CODEVS.3029 设置位置 题目描述 有一个村庄居住着n个村民,有n-1条路径使得这n个村民的家联通,每条路径的长度都为1.现在村长希望在某个村民家中召开一场会 ...

  5. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  6. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  7. poj3107 求树的重心(&& poj1655 同样求树的重心)

    题目链接:http://poj.org/problem?id=3107 求树的重心,所谓树的重心就是:在无根树转换为有根树的过程中,去掉根节点之后,剩下的树的最大结点最小,该点即为重心. 剩下的数的 ...

  8. 求树的重心 poj 1655

    题目链接:https://vjudge.net/problem/POJ-1655 这个就是找树的重心,树的重心就是树里面找一个点,使得以这个点为树根的所有的子树中最大的子树节点数最小.题目应该讲的比较 ...

  9. poj3107 Godfather 求树的重心

    Description Last years Chicago was full of gangster fights and strange murders. The chief of the pol ...

随机推荐

  1. java高并发系列 - 第22天:java中底层工具类Unsafe,高手必须要了解

    这是java高并发系列第22篇文章,文章基于jdk1.8环境. 本文主要内容 基本介绍. 通过反射获取Unsafe实例 Unsafe中的CAS操作 Unsafe中原子操作相关方法介绍 Unsafe中线 ...

  2. Fragment 使用详解

    极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...

  3. 佳木斯集训Day8

    本来能AK的啊啊啊啊啊,唯一一天可以AK,却被Champion误导了(好吧实际上是我理解有问题) T1我写了俩小时,就是一道数列题,推公式的,可以二分解,我觉得二分麻烦,就直接想O(1)了 #incl ...

  4. Scala类和对象(二)

    1. 类和属性 1.1 如何控制构造函数字段的可见性 在Scala中: 如果一个字段被声明为var, Scala会为该字段生成getter和setter方法. 如果字段是val, Scala只生成ge ...

  5. Java虚拟机——Java内存区域

    1.运行时区域 Java虚拟机在执行Java程序的时候会把它管理的内厝划分为若干个不同功能的数据区域,如图所示 首先是程序计数器,程序计数器可以理解为当前程序执行的字节码的行号指示器,计数器中的数据即 ...

  6. PDF.js 详情解说

    pdf.js资源下载 点我下载 自定义默认加载的pdf资源 在web/view.js中我们可以通过DEFAULT_URL设置默认加载的pdf.通过上面代码我们也可以看出来可以通过后缀名来指定加载的pd ...

  7. node一键发布,并运行

    作为一个前端开发人员如果你只会写一些业务代码,从程序员的角度来考虑已经可以了.但是从架构的角度来考虑那远远不够: 在此记录下成长中的经历: 想要达成的目的:运行一个脚本实现代码的打包,上传至服务器并部 ...

  8. html5标签整理

    html元素 基础标签 <!DOCTYPE> 定义文档类型(e.g  <!DOCTYPE  html>) <html>定义一个HTML文档</html> ...

  9. Nginx在linux下安装及简单命令

    安装环境:Centos7 创建目录及切换至目录 # mkdir /usr/local/nginx # cd /usr/local/nginx/ 下载nginx包,访问http://nginx.org下 ...

  10. SpringMVC 原理 - 设计原理、启动过程、请求处理详细解读

    SpringMVC 原理 - 设计原理.启动过程.请求处理详细解读 目录 一. 设计原理 二. 启动过程 三. 请求处理 一. 设计原理 Servlet 规范 SpringMVC 是基于 Servle ...