「刷题」JZPKIL
这道反演题,真牛逼。
以下用$B$代表伯努利数,$l*g=f$代表狄利克雷卷积,先推式子。
对于给出的$n,x,y$求一百组数据的$ans$
$\begin{array}{rcl} ans & = & \sum\limits_{i=1}^ngcd(i,n)^xlcm(i,n)^y\end{array}$
$\begin{array}{rcl} & = & \sum\limits_{i=1}^ngcd(i,n)^x\frac{(in)^y}{gcd(i,n)^y}\end{array}$
$\begin{array}{rcl} & = & \sum\limits_{i=1}^ngcd(i,n)^{x-y}(in)^y\end{array}$
$\begin{array}{rcl} & = & n^y\sum\limits_{i=1}^ni^ygcd(i,n)^{x-y}\end{array}$
$\begin{array}{rcl} & = & n^y\sum\limits_{d|n}d^{x-y} \sum \limits_{i=1}^{\lfloor \frac{n}{d} \rfloor} (id)^y[gcd(i,\lfloor\frac{n}{d} \rfloor)=1]\end{array}$
$\begin{array}{rcl} & = & n^y\sum\limits_{d|n}d^x\sum\limits_{i=1}^{\lfloor \frac{n}{d} \rfloor}i^y\sum\limits_{t|gcd(i,\lfloor \frac{n}{d} \rfloor)}\mu(t)\end{array}$
$\begin{array}{rcl} & = & n^y\sum\limits_{d|n}d^x\sum\limits_{t|\lfloor\frac{n}{d}\rfloor}\mu(t)t^y\sum\limits_{i=1}^{\lfloor\frac{n}{td}\rfloor}i^y\end{array}$
$\begin{array}{rcl}\sum\limits_{i=0}^{\lfloor\frac{n}{td}\rfloor}i^y & = & \frac{1}{y+1}\sum\limits_{i=0}^yC_{y+1}^iB_i(\lfloor\frac{n}{td}\rfloor)^{y-i+1}\end{array}$
$\begin{array}{rcl}R_i & = & \frac{C_{y+1}^iB_i}{y+1}\end{array}$
$\begin{array}{rcl}ans & = & n^y\sum\limits_{d|n}d^x\sum\limits_{t|\lfloor\frac{n}{d}\rfloor}\mu(t)t^y\sum\limits_{i=0}^yR_i(\lfloor\frac{n}{td}\rfloor)^{y-i+1}\end{array}$
$\begin{array}{rcl} & = & \sum\limits_{i=1}^yR_in^y\sum\limits_{d|n}d^x\sum\limits_{t|\lfloor\frac{n}{d}\rfloor}\mu(t)t^y(\lfloor\frac{n}{td}\rfloor)^{y-i+1}\end{array}$
$\begin{array}{rcl}f_{i,x,y}(n) & = & n^y\sum\limits_{d|n}d^x\sum\limits_{t|\lfloor\frac{n}{d}\rfloor}\mu(t)t^y(\lfloor\frac{n}{td}\rfloor)^{y-i+1}\end{array}$
分析$f_{i,x,y}(n)$。
$\begin{array}{rcl}l(x) & = & \mu(x)x^y \end{array}$
$\begin{array}{rcl}q_r(x) & = & x^r\end{array}$
$l,q$ 均为积性函数。
$\begin{array}{rcl} g(n) & = & \sum\limits_{d|n}\mu(d)d^yq(\lfloor\frac{n}{d}\rfloor)\end{array}$
$\begin{array}{rcl}g(n) & = & l(n)*q(n)\end{array}$
也为积性函数。
$\begin{array}{rcl}f(n) & = & \sum\limits_{d|n}q(d)g(\lfloor\frac{n}{d}\rfloor) \\ & = & q(n)*g(n) \end{array}$
所以$f_{i,x,y}(n)$是积性函数。
$\begin{array}{rcl}ans & = & \sum\limits_{i=0}^yR_if_{i,x,y}(n)\end{array}$
$n$为$1e18$考虑用$O(n^{1/4})$的$Pollard_Rho$算法对$n$进行质因分解。
$n=\_p^c$
$\begin{array}{rcl}f_{i,x,y}(p^c) & = & p^{cy}\sum\limits_{d|p^c}\sum\limits_{t|\lfloor\frac{p^c}{d}\rfloor}\mu(t)t^y(\lfloor\frac{p^c}{td}\rfloor)^{y-i+1}\end{array}$
$\begin{array}{rcl} & = & p^{cy}\sum\limits_{j=0}^cp^{jx}\sum\limits_{k=0}^{c-j}\mu(p^k)p^{ky}(p^{c-j-k})^{y-i+1}\end{array}$
当k=1或者0的时候,莫比乌斯函数不为0。
$\begin{array}{rcl} & = & p^{cy}\sum\limits_{j=0}^c p^{jx}[(p^{c-j})^{y-i+1}-p^y(p^{c-j-1})^{y-i+1}]\end{array}$
问题得到解决。
知识点:
莫比乌斯反演
狄利克雷卷积
积性函数
自然数幂和
伯努利数
$Miller\_Rabin$素数测试
$Pollard\_Rho$质因数分解
费马小定理
二次初探原理
生日悖论
有兴趣的可以尝试一下,是道好题。
「刷题」JZPKIL的更多相关文章
- 「刷题」THUPC泛做
刷了一下,写一下. T1. 天天爱射击 可以这样想. 我们二分一下每一块木板在什么时刻被击碎. 然后直接用主席树维护的话是\(O(nlog^2n)\)的. 会\(T\),而且是一分不给那种... 那么 ...
- 「刷题」Triple
正解是普通型母函数+FFT. 才学了多项式,做了一道比较好的题了. 首先有三个斧子被偷了. 我们考虑构造一种普通型母函数. 就是说一种多项式吧,我的理解. 系数是方案,下标,也就是所谓的元指数代表的是 ...
- 「刷题」xor
说实话这道题没有A掉,不过所有的思路都是我自己想的,我觉得这个思路真的很棒很棒很棒的. 首先这个题的题面描述告诉我这种运算有封闭性,满足结合律和交换率,那么其实这个东西是个群运算了,而且这个群有单位元 ...
- 「刷题」GERALD07加强版
是LCT了. 首先我们不知道联通块怎么数. 然后颓标签知道了是LCT. 那么考虑一下怎么LCT搞. 有一个很普遍的思路大家也应该都知道,就是如何求一个区间中某种颜色的个数. 这个可以很简单的用主席树来 ...
- 「刷题」可怜与STS
又是一道假期望,我们发现一共有$ C_{2n}^m $种情况. 而$ \frac{(2n)!}{m!(2n-m)!}=C_{2n}^m $ 其实结果就是各个情况总伤害. 1.10分算法,爆搜10分. ...
- 「刷题」Color 群论
这道题乍一看挺水的,直接$ Ploya $就可以了,可是再看看数据范围:n<=1e9 那就是有1e9种置换,这不歇比了. 于是考虑式子的优化. 首先证明,转i次的置换的每个循环结大小是 $ gc ...
- 「刷题」卡特兰数&prufer序列
1.网格 转换模型,翻折容斥出解. 2.有趣的数列 抽象一下模型,把奇数项当作横坐标,偶数项当作纵坐标,就是从n*n矩阵左下角走到右上角并且每一步x<=y的方案数,发现是卡特兰数,关于gcd,可 ...
- 「刷题笔记」AC自动机
自动AC机 Keywords Research 板子题,同luoguP3808,不过是多测. 然后多测不清空,\(MLE\)两行泪. 板子放一下 #include<bits/stdc++.h&g ...
- 「刷题笔记」DP优化-状压-EX
棋盘 需要注意的几点: 题面编号都是从0开始的,所以第1行实际指的是中间那行 对\(2^{32}\)取模,其实就是\(unsigned\ int\),直接自然溢出啥事没有 棋子攻击范围不会旋转 首先, ...
随机推荐
- IDEA 学习笔记之 Maven项目开发
Maven项目开发: 配置Maven: 新建Maven项目: 选择webapp: 和eclipse一样,设置: 修改maven配置,添加一个新属性,可以加快项目创建速度: 完成: 新建java和tes ...
- 斐波那契数列n项的值。(递归和非递归算法Golang实现)
递归实现: func f(num int) int { if num == 1 || num == 2 { return 1 } return f(num-1) + f(num-2) } 非递归实现: ...
- dubbo配置负载均衡、集群环境
再用dubbo作为项目架构的时候,给consumer消费者用nginx提供了负载均衡策略和集群的实现, 但是想了下,consumer再多,但是提供者还是一个,最后还不都是落到了这一个provider上 ...
- Aria2 1.35.0,更新,测试,发布
在上一篇: 有哪些便宜还好用的东西,买了就感觉得了宝一样? 结尾提到了Tatsuhiro Tsujikawa的aria2计划在10月更新一个新的版本 今天趁着雨后明月挂天,开始了简单的更新 虽然在半年 ...
- java之ThreadLocal详解
一.ThreadLocal简介 ThreadLocal是线程的局部变量,是每一个线程所单独持有的,其他线程不能对其进行访问,通常是类中的private static字段. 我们知道有时候一个对象的变量 ...
- 利用Helm简化Kubernetes应用部署(2)
目录 定义Charts 使用Helm部署Demo Helm常用操作命令 定义Charts 回到之前的“charts”目录,我们依次进行解读并进行简单的修改. Chart.yaml 配置示例: a ...
- Maven下载速度过慢问题已解决
因为Maven 默认仓库的服务器在国外所以我们国内的使用效果极差,我们可以修改成为国内镜像地址加速下载. 两种方法 修改全局文件 C:\Users\您电脑帐号\ .m2\settings.xml没有文 ...
- Jenkins构建Jmeter项目之源代码管理(SVN)
1.查看项目创建中是否又svn插件,没有的话下载插件subversion 2.配置svn源代码管理,如下图(testcases目录下包含build.xml和脚本文件) 3.查看Jenkins本地工作空 ...
- PhantomJS not found on PATH
使用vue-cli创建项目后,npm init常出现以下问题:PhantomJS not found on PATH 这是因为文件phantomjs-2.1.1-windows.zip过大,网络不好容 ...
- 2-SAT问题学习笔记+例题[洛谷P4792]
一个不错的2-SAT文章:传送门 问题初入 什么是2-SAT SAT是适定性(Satisfiability)问题的简称 .一般形式为k-适定性问题,简称 k-SAT. 首先,把「2」和「SAT」拆开. ...