B. Box

Permutation p is a sequence of integers p=[p1,p2,…,pn], consisting of n distinct (unique) positive integers between 1 and n, inclusive. For example, the following sequences are permutations: [3,4,1,2], [1], [1,2]. The following sequences are not permutations: [0], [1,2,1], [2,3], [0,1,2].

The important key is in the locked box that you need to open. To open the box you need to enter secret code. Secret code is a permutation p of length n.

You don't know this permutation, you only know the array q of prefix maximums of this permutation. Formally:

q1=p1,

q2=max(p1,p2),

q3=max(p1,p2,p3),

...

qn=max(p1,p2,…,pn).

You want to construct any possible suitable permutation (i.e. any such permutation, that calculated q for this permutation is equal to the given array).

Input

The first line contains integer number t (1≤t≤104) — the number of test cases in the input. Then t test cases follow.

The first line of a test case contains one integer n (1≤n≤105) — the number of elements in the secret code permutation p.

The second line of a test case contains n integers q1,q2,…,qn (1≤qi≤n) — elements of the array q for secret permutation. It is guaranteed that qi≤qi+1 for all i (1≤i<n).

The sum of all values n over all the test cases in the input doesn't exceed 105.

Output

For each test case, print:

If it's impossible to find such a permutation p, print "-1" (without quotes).

Otherwise, print n distinct integers p1,p2,…,pn (1≤pi≤n). If there are multiple possible answers, you can print any of them.

Example

input

4

5

1 3 4 5 5

4

1 1 3 4

2

2 2

1

1

output

1 3 4 5 2

-1

2 1

1

Note

In the first test case of the example answer [1,3,4,5,2] is the only possible answer:

q1=p1=1;

q2=max(p1,p2)=3;

q3=max(p1,p2,p3)=4;

q4=max(p1,p2,p3,p4)=5;

q5=max(p1,p2,p3,p4,p5)=5.

It can be proved that there are no answers for the second test case of the example.

题意

现在给你前缀最大值是多少,让你还原这个排列,问你是否有解。

题解

给了你前缀最大值,我们现在如果发现前缀最大值变化了,那么这个位置肯定是这个最大值,否则就插入了一个小的数,那么我们插入最小的就好。

代码

#include<bits/stdc++.h>
using namespace std; vector<int>Q;
void solve(){
int n;scanf("%d",&n);
Q.clear();
vector<int> ans;
set<int>S;
for(int i=0;i<n;i++){
int x;scanf("%d",&x);
Q.push_back(x);
S.insert(i+1);
}
int mx = 0;
for(int i=0;i<n;i++){
if(Q[i]>mx){
if(S.count(Q[i])){
S.erase(Q[i]);
ans.push_back(Q[i]);
}else{
cout<<"-1"<<endl;
return;
}
mx = Q[i];
}else{
if(*S.begin()>mx){
cout<<"-1"<<endl;
return;
}else{
ans.push_back(*S.begin());
S.erase(S.begin());
}
}
}
for(int i=0;i<ans.size();i++){
cout<<ans[i]<<" ";
}
cout<<endl;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
solve();
}
}

Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心的更多相关文章

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3

    A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...

  2. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学

    F2. Wrong Answer on test 233 (Hard Version) Your program fails again. This time it gets "Wrong ...

  3. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和

    E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...

  4. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心

    D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...

  5. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造

    C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...

  6. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

  7. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy

    //因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...

  8. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box

    #include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem

    //只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...

随机推荐

  1. 微信小程序连接低功率蓝牙控制单片机上硬件设备

    1.软件部分介绍 微信小程序是一种新的应用,用户不需要下载应用只用通过扫二维码或者打开链接就能使用,使用完后不需要卸载,直接关闭就行了.微信在2017年初推出微信小程序开发环境.任何企业,媒体,个人都 ...

  2. Windows相关操作(备忘)

    查看服务端口是否能通:telnet 192.168.1.11 8888 查看端口是否被占用 netstat -ano

  3. katalon Studio之WebUi自动化测试视频教程持续更新

    通知...通知...通知... 为了更好的把katalon Studio自动化测试工具推广给大家,最近在B站中开通了视频专栏,地址如下: https://www.bilibili.com/video/ ...

  4. Linux(Centos7)下redis5安装、部署、开机自启

    1.什么是redis redis是用C语言开发的一个开源的高性能键值对(key-value)数据库.它通过提供多种键值数据类型来适应不同场景下的存储需求,目前为止redis支持的键值数据类型如下字符串 ...

  5. Spring Boot修改JSP不用重启的办法

    在application.properties文件中添加一行代码解决. Spring Boot 2.0以上添加如下一行: server.servlet.jsp.init-parameters.deve ...

  6. 好程序员web前端分享前端学习路线自学如何找到工作

    好程序员web前端分享前端学习路线自学如何找到工作,自学能不能学会WEB前端并且找到WEB前端开发岗位的工作取决于自身条件,如果基础好,自律性强那么将会容易很多,还有就是自学最难克服的并不是知识点,而 ...

  7. 12c分区增强功能,新功能(文档ID 1568010.1)

    12c Partitioning Enhancements, New Features (Doc ID 1568010.1) APPLIES TO: Oracle Database - Enterpr ...

  8. MySQL数据库:多表连接查询

    多表连接查询 注意:使用连接技术建议将表经行重命名! # explain 检索连接是否达标 # 内连接 # 语法1 from 表1 inner join 表2 on 主键字段=外键字段 [where ...

  9. 用Loading 加载中的整页加载来做蒙层

    总结:遇见的bug 如何写一个蒙层 最初我打算的是自己写一个蒙层,但是写出来后, 不能够将整个屏幕全部覆盖.只能够覆盖 除[顶部导航] 和[左侧菜单栏] 于是我就使用了element-ui中的 [Lo ...

  10. ADB常用命令(一)

    转自:https://blog.csdn.net/qq_26552691/article/details/81348222 一.操作前请确认电脑上已配置好ADB环境.可在CMD命令行输入adb,如果出 ...