Linux中自旋锁
传统的spinlock
Linux的的内核最常见的锁是自旋锁。自旋锁最多只能被一个可执行线程持有。如果一个执行线程试图获得一个被已经持有(争用)的自旋锁,那么该线程就会一直进行忙循环-旋转-等待锁重新可用要是锁未被争用,请求锁的执行线程就可以立即得到它,继续执行。在任意时间,自旋锁都可以防止多于一个的执行线程同时进入临界区。同一个锁可以用在多个位置,例如,对于给定数据的所有访问都可以得到保护和同步。
自旋锁在同一时刻至多被一个执行线程持有,所以一个时刻只有一个线程位于临界区内,这就为多处理器机器提供了防止并发访问所需的保护机制。在单处理机器上,编译的时候不会加入自旋锁,仅会被当作一个设置内核抢占机制是否被启用的开关。如果禁止内核抢占,那么在编译时自旋锁就会被剔除出内核。
传统的自旋锁本质上用一个整数来表示,值为1代表锁未被占用, 为0或者为负数表示被占用。
在单处理机环境中可以使用特定的原子级汇编指令swap和test_and_set实现进程互斥,(Swap指令:交换两个内存单元的内容;test_and_set指令取出内存某一单元(位)的值,然后再给该单元(位)赋一个新值) 这些指令涉及对同一存储单元的两次或两次以上操作,这些操作将在几个指令周期内完成,但由于中断只能发生在两条机器指令之间,而同一指令内的多个指令周期不可中断,从而保证swap指令或test_and_set指令的执行不会交叉进行.
在多处理机环境中情况有所不同,例如test_and_set指令包括“取”、“送”两个指令周期,两个CPU执行test_and_set(lock)可能发生指令周期上的交叉,假如lock初始为0, CPU1和CPU2可能分别执行完前一个指令周期并通过检测(均为0),然后分别执行后一个指令周期将lock设置为1,结果都取回0作为判断临界区空闲的依据,从而不能实现互斥.
为在多CPU环境中利用test_and_set指令实现进程互斥,硬件需要提供进一步的支持,以保证test_and_set指令执行的原子性. 这种支持目前多以“锁总线”(bus locking)的形式提供的,由于test_and_set指令对内存的两次操作都需要经过总线,在执行test_and_set指令之前锁住总线,在执行test_and_set指令后开放总线,即可保证test_and_set指令执行的原子性。
typedef struct { /** * 该字段表示自旋锁的状态,值为1表示未加锁,任何负数和0都表示加锁 */ volatile unsigned int slock; #ifdef CONFIG_DEBUG_SPINLOCK unsigned magic; #endif #ifdef CONFIG_PREEMPT /** * 表示进程正在忙等待自旋锁。 * 只有内核支持SMP和内核抢占时才使用本标志。 */ unsigned int break_lock; #endif } spinlock_t;
加锁
/** * 当内核不可抢占时,spin_lock的实现过程。 */ #define _spin_lock(lock) \ do { \ /** * 调用preempt_disable禁用抢占。 */ preempt_disable(); \ /** * _raw_spin_lock对自旋锁的slock字段执行原子性的测试和设置操作。 */ _raw_spin_lock(lock); \ __acquire(lock); \ } ) #define _raw_spin_lock(x) \ do { \ CHECK_LOCK(x); \ if ((x)->lock&&(x)->babble) { \ (x)->babble--; \ printk("%s:%d: spin_lock(%s:%p) already locked by %s/%d\n", \ __FILE__,__LINE__, (x)->module, \ (x), (x)->owner, (x)->oline); \ } \ (x)->; \ (x)->owner = __FILE__; \ (x)->oline = __LINE__; \ } )
解锁
#define _spin_unlock(lock) \ do { \ _raw_spin_unlock(lock); \ preempt_enable(); \ __release(lock); \ } ) static inline void _raw_spin_unlock(spinlock_t *lock) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(lock->magic != SPINLOCK_MAGIC); BUG_ON(!spin_is_locked(lock)); #endif __asm__ __volatile__( spin_unlock_string ); } //在spin_unlock_string中,%0即为锁 - > s 锁,movb指令将锁 - > s 锁定为1,movb指令本身就是原子操作,所以不需要锁总线。 #define spin_unlock_string \ "movb $1,%0" \ :"=m" (lock->slock) : : "memory"
ticket spinlock
Linux 内核 2.6.25 版本中引入了排队自旋锁:通过保存执行线程申请锁的顺序信息来解决“不公平”问题。
排队自旋锁仍然使用原有的 raw_spinlock_t 数据结构,但是赋予 slock 域新的含义。为了保存顺序信息,slock 域被分成两部分,分别保存锁持有者和未来锁申请者的票据序号(Ticket Number),如下图所示:
只有 Next 域与 Owner 域相等时,才表明锁处于未使用状态(此时也无人申请该锁)。排队自旋锁初始化时 slock 被置为 0,即 Owner 和 Next 置为 0。内核执行线程申请自旋锁时,原子地将 Next 域加 1,并将原值返回作为自己的票据序号。如果返回的票据序号等于申请时的 Owner 值,说明自旋锁处于未使用状态,则直接获得锁;否则,该线程忙等待检查 Owner 域是否等于自己持有的票据序号,一旦相等,则表明锁轮到自己获取。线程释放锁时,原子地将 Owner 域加 1 即可,下一个线程将会发现这一变化,从忙等待状态中退出。线程将严格地按照申请顺序依次获取排队自旋锁,从而完全解决了“不公平”问题。
ticket spinlock数据结构
typedef struct arch_spinlock { union { __ticketpair_t head_tail; struct __raw_tickets { __ticket_t head, tail; } tickets; }; } arch_spinlock_t;
申请自旋锁时,原子地将tail加1,释放时,head加1。只有head域和tail域的值相等时,才表明锁处于未使用的状态。
加锁
static inline void __raw_spin_lock(raw_spinlock_t *lock) { asm volatile("\n1:\t" LOCK_PREFIX " ; decb %0\n\t" "jns 3f\n" "2:\t" "rep;nop\n\t" "cmpb $0,%0\n\t" "jle 2b\n\t" "jmp 1b\n" "3:\n\t" : "+m" (lock->slock) : : "memory"); }
解锁
static inline void __raw_spin_unlock(raw_spinlock_t *lock) { asm volatile("movb $1,%0" : "+m" (lock->slock) :: "memory"); }
不足:
在大规模多处理器系统和 NUMA系统中,排队自旋锁(包括传统自旋锁)存在一个比较严重的性能问题:由于执行线程均在同一个共享变量 slock 上自旋,申请和释放锁的时候必须对 slock 进行修改,这将导致所有参与排队自旋锁操作的处理器的缓存变得无效。如果排队自旋锁竞争比较激烈的话,频繁的缓存同步操作会导致繁重的系统总线和内存的流量,从而大大降低了系统整体的性能。
mcs spinlock
核心思想是:每个锁的申请者(处理器)只在一个本地变量上自旋。MCS Spinlock是其中一种基于链表结构的自旋锁。
MCS Spinlock的设计目标如下:
- 保证自旋锁申请者以先进先出的顺序获取锁(FIFO Ordering)。
- 只在本地可访问的标志变量上自旋。
- 在处理器个数较少的系统中或锁竞争并不激烈的情况下,保持较高性能。
- 自旋锁的空间复杂度(即锁数据结构和锁操作所需的空间开销)为常数。
- 在没有处理器缓存一致性协议保证的系统中也能很好地工作。
MCS Spinlock采用链表结构将全体锁申请者的信息串成一个单向链表,如图 1 所示。每个锁申请者必须提前分配一个本地结构 mcs_lock_node,其中至少包括 2 个域:本地自旋变量 waiting 和指向下一个申请者 mcs_lock_node 结构的指针变量 next。waiting 初始值为 1,申请者自旋等待其直接前驱释放锁;为 0 时结束自旋。而自旋锁数据结构 mcs_lock 是一个永远指向最后一个申请者 mcs_lock_node 结构的指针,当且仅当锁处于未使用(无任何申请者)状态时为 NULL 值。MCS Spinlock 依赖原子的“交换”(swap)和“比较-交换”(compare_and_swap)操作,缺乏后者的话,MCS Spinlock 就不能保证以先进先出的顺序获取锁,从而可能造成“饥饿”(Starvation)。
版本1:每个锁有NR_CPUS大的node数组, mcs_lock_node 结构可以在处理器所处节点的内存中分配,从而加快访问速度.
typedef struct _mcs_lock_node { volatile int waiting; struct _mcs_lock_node *volatile next; } ____cacheline_aligned_in_smp mcs_lock_node; typedef mcs_lock_node *volatile mcs_lock; typedef struct { mcs_lock slock; mcs_lock_node nodes[NR_CPUS]; } raw_spinlock_t;
spin_lock(&lock)
spin_unlock(&lock)
版本2:
spin_lock(&lock, &node);
spin_unlock(&lock, &node);
加锁
static __always_inline void __raw_spin_lock(raw_spinlock_t *lock) { int cpu; mcs_lock_node *me; mcs_lock_node *tmp; mcs_lock_node *pre; cpu = raw_smp_processor_id(); (a) me = &(lock->nodes[cpu]); tmp = me; me->next = NULL; pre = xchg(&lock->slock, tmp); (b) if (pre == NULL) { /* mcs_lock is free */ return; (c) } me->waiting = ; (d) smp_wmb(); (e) pre->next = me; (f) while (me->waiting) { (g) asm volatile (“pause”); } } static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock) { int cpu; mcs_lock_node *me; cpu = raw_smp_processor_id(); me = &(lock->nodes[cpu]); me->next = NULL; if (cmpxchg(&lock->slock, NULL, me) == NULL) (a) ; else ; }
解锁
static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock) { int cpu; mcs_lock_node *me; mcs_lock_node *tmp; cpu = raw_smp_processor_id(); me = &(lock->nodes[cpu]); tmp = me; if (me->next == NULL) { (a) if (cmpxchg(&lock->slock, tmp, NULL) == me) { (b) /* mcs_lock I am the last. */ return; } while (me->next == NULL) (c) continue; } /* mcs_lock pass to next. */ me->next->waiting = ; (d) }
不足:
版本1的mcs spinlock 锁占用空间大
版本二的mcs spinlock 使用时需要传入mode, 和之前的spinlock api不兼容,无法替换ticket spinlock.
qspinlock
qspinlock 是内核4.2引入的,主要基于mcs spinlock的设计思想,解决了mcs spinlock接口不一致或空间太大的问题。它的数据结构体比mcs lock大大减小, 同ticket spinlock一样大小。qspinlock的等待变量是全局变量。
qspinlock的数据结构定义在kernel/qspinlock.c中 struct __qspinlock { union { atomic_t val; #ifdef __LITTLE_ENDIAN struct { u8 locked; u8 pending; }; struct { u16 locked_pending; u16 tail; }; #else struct { u16 tail; u16 locked_pending; }; struct { u8 reserved[]; u8 pending; u8 locked; }; #endif
具体位域
/* * Bitfields in the atomic value: * * When NR_CPUS < 16K * 0- 7: locked byte * 8: pending * 9-15: not used * 16-17: tail index * 18-31: tail cpu (+1) * * When NR_CPUS >= 16K * 0- 7: locked byte * 8: pending * 9-10: tail index * 11-31: tail cpu (+1) */
static __always_inline void queued_spin_lock(struct qspinlock *lock) { u32 val; val = atomic_cmpxchg_acquire(&, _Q_LOCKED_VAL); )) return; queued_spin_lock_slowpath(lock, val); }
qspinlock采用mcs lock的机制, 每一个cpu都定义有一个strcut mcs spinlock的数据结构在大规模多处理器系统和 NUMA系统中, 使用qspinlock 可以较好的提高锁的性能。
Linux中自旋锁的更多相关文章
- linux内核--自旋锁的理解
http://blog.chinaunix.net/uid-20543672-id-3252604.html 自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对 ...
- linux内核自旋锁API
我们大概都了解,锁这种机制其实是为了保护临界区代码的,关于使用和定义,我总结的API如下: #include <linux/spinlock.h> 定义自旋锁 spinlock_t loc ...
- LINUX内核笔记:自旋锁
目录 自旋锁作用与基本使用方法? 在SMP和UP上的不同表现? 自旋锁与上下文 使用spin_lock()后为什么不能睡眠? 强调:锁什么? 参考 1.自旋锁作用与基本使用方法? 与其他锁一样,自 ...
- Linux内核同步:自旋锁
linux内核--自旋锁的理解 自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对于UP系统,自旋锁仅做抢占和中断操作,没有实现真正的“自旋”.如果配置了CON ...
- linux 自旋锁和信号量【转】
转自:http://blog.csdn.net/xu_guo/article/details/6072823 版权声明:本文为博主原创文章,未经博主允许不得转载. 自旋锁最多只能被一个可执行线程持有( ...
- 浅谈Linux中的各种锁及其基本原理
本文首发于:https://mp.weixin.qq.com/s/Ahb4QOnxvb2RpCJ3o7RNwg 微信公众号:后端技术指南针 0.概述 通过本文将了解到如下内容: Linux系统的并行性 ...
- Linux中的各种锁及其基本原理
Linux中的各种锁及其基本原理 1.概述 通过本文将了解到如下内容: Linux系统的并行性特征 互斥和同步机制 Linux中常用锁的基本特性 互斥锁和条件变量 2.Linux的并行性特征 Linu ...
- Linux组件封装(一)中互斥锁MutexLock的封装
本文对Linux中的pthread_mutex_t做一个简易的封装. 互斥锁主要用于互斥,互斥是一种竞争关系,主要是某一个系统资源或一段代码,一次做多被一个线程访问. 条件变量主要用于同步,用于协调线 ...
- 菜鸟nginx源代码剖析数据结构篇(十) 自旋锁ngx_spinlock
菜鸟nginx源代码剖析数据结构篇(十) 自旋锁ngx_spinlock Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.cs ...
随机推荐
- sakura设置桌面壁纸
下下载steam上的Wallpaper Engine 先将sakura.html下载为html文件. 再从文件打开 就保存了 再加载保存,就一直是了
- FormData的介绍(一)
FormData对象介绍FormData字母意思是表单数据,H5新增的一个内置对象.可以获取任何类型的表单数据,如text radio checkbox file textarea 常用语发送ajax ...
- 06. Go 语言结构体
Go语言结构体(struct) Go 语言通过用自定义的方式形成新的类型,结构体是类型中带有成员的复合类型.Go 语言使用结构体和结构体成员来描述真实世界的实体和实体对应的各种属性. Go 语言中的类 ...
- 【Oracle】SQL的各种连接join
SQL JOIN 子句用于把来自两个或多个表的行结合起来,基于这些表之间的共同字段. 最常见的 JOIN 类型: INNER JOIN(简单的 JOIN).LEFT JOIN.RIGHT JOIN.F ...
- 干货 | 国内互联网公司是如何做微服务实践的?(附PPT下载)
微服务的概念最早由Martin Fowler与James Lewis于2014年共同提出,并随着Netflix最佳实践的发布而为业界所知.如今,在国内有了大量的微服务实践案例,5月18日,网易云联合云 ...
- 最热门的 10 个 Java 微服务框架
1.Spring Boot Java 构建 Spring 应用程序已经有很长一段时间了,Spring Boot 是 Spring 的一个特定版本,它通过对配置细节的处理,使微服务构建更加简便.创建 S ...
- javascript实现base64编码、解码
我们知道,浏览器的window对象提供有window.atob()和window.btoa()方法可以对字符串进行Base64编码和解码. console.log(window.btoa(window ...
- 关于 ASP.NET Core 中的 OData
1. BooksController using BooksODataService.Models; using Microsoft.AspNet.OData; using Microsoft.Asp ...
- SAS与SATA的区别
SAS SATA的区别 协议方面 SAS(Serial Attached SCSI)即串行连接SCSI,SATA(Serial Advanced Technology Attachment)即串行高级 ...
- Java SPI机制实战详解及源码分析
背景介绍 提起SPI机制,可能很多人不太熟悉,它是由JDK直接提供的,全称为:Service Provider Interface.而在平时的使用过程中也很少遇到,但如果你阅读一些框架的源码时,会发现 ...