pointcnn
这篇论文先举例子解释了为什么卷积无法直接应用在点云数据上。
如图1, 传统的卷积是作用在2维图像数据上。图像中每个像素的顺序是固定的,也就是说数据是结构化存储的。直接使用conv2d就能从这种潜在的空间结构中获取信息。
而点云数据是点集,如果直接使用卷积会出现图中234多种情况
若直接使用卷积,则f2与f3的计算结果是相等的,但是从图中可知,23显示不同,这说明卷积无法获得点的空间信息
而f3与f4的计算结果不等,但是图3与图4是相同的点集,必须得到相同的计算结果才合理,这说明卷积无法适应点集的N!种排列。
在其他论文里,为了适应点云数据的这两种的特点采取的方式有体素化、3DCNN及PointNet提的对称操作(symmetric,这个翻译是我自己译的)
版权声明:本文为CSDN博主「Link2Link」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_15602569/article/details/79560614
卷积神经网络(Conv)能够很好利用原始数据的在空间上的局部相关性(Spatially-local correlation),这也正是卷积神经网络在各种分割或者分类任务中取得成功的关键。正是如此,作者设想是否能效仿卷积神经网络来很好的利用点云(Point Cloud)的空间上的局部相关性,这将在点云分割和分类上取得很大的成功。所以这篇文章的重点就在于怎么利用这种相关性。
版权声明:本文为CSDN博主「JMU-HSF」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42956785/article/details/86586513
首先,根据采样得到的中心点,将全局坐标变为局部坐标,相当于分区。(点的数量如何确定?)
o 利用MLP将每个点变换到高维空间(一维卷积),得到F-sigma
o Concat特征F(输入的每个点的附加特征,比如color或者normal)和F-sigma,得到新的特征F*
o 对每个局部区域中的点使用MLP,得到变换矩阵X。这里可以注意一下,得到变换矩阵X的过程,输入是P'(一组坐标点),输出是变换矩阵X。文中的消除实验表明,X变换的确是有效果的
o 对特征F*使用X进行变换后,在进行传统的卷积(1维)。作者是希望通过X变换,把特征F*变成空间相关,也就是希望矩阵中相邻的在空间中也相邻,这样就可以像图像一样卷积了。
作者:摸鱼家
链接:https://zhuanlan.zhihu.com/p/89752154
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
https://blog.csdn.net/qq_33278989/article/details/80047252
pointcnn的更多相关文章
- PointCNN 论文翻译解析
1. 前言 卷积神经网络在二维图像的应用已经较为成熟了,但 CNN 在三维空间上,尤其是点云这种无序集的应用现在研究得尤其少.山东大学近日公布的一项研究提出的 PointCNN 可以让 CNN 在点云 ...
- 论文笔记:(NIPS2018)PointCNN: Convolution On X-Transformed Points
目录 摘要 一.2D卷积应用在点云上存在的问题 二.解决的方法 2.1 idea 2.2 X-conv算子 2.3 分层卷积 三.实验 3.1分类和分割 3.2消融实验.可视化和模型复杂度 总结 仍存 ...
- 3D点云的深度学习
使用卷积神经网络(CNN)架构的深度学习(DL)现在是解决图像分类任务的标准解决方法.但是将此用于处理3D数据时,问题变得更加复杂.首先,可以使用各种结构来表示3D数据,所述结构包括: 1 体素网格 ...
- 转载:点云上实时三维目标检测的欧拉区域方案 ----Complex-YOLO
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection ...
- CVPR2020:4D点云语义分割网络(SpSequenceNet)
CVPR2020:4D点云语义分割网络(SpSequenceNet) SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds 论 ...
- CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)
CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...
- CVPR2020:三维点云无监督表示学习的全局局部双向推理
CVPR2020:三维点云无监督表示学习的全局局部双向推理 Global-Local Bidirectional Reasoning for Unsupervised Representation L ...
- 论文笔记:(2021CVPR)PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
目录 摘要 1.引言 2.相关工作 将点云映射到常规二维或三维栅格(体素) 基于MLPs的点表示学习 基于点卷积的点表示学习 动态卷积和条件卷积 3.方法 3.1 回顾 3.2 动态内核组装 Weig ...
- 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...
随机推荐
- 《细说PHP》第四版 样章 第18章 数据库抽象层PDO 11
18.8.3 完美分页类的代码实现 分页类的编写除了需要使用在18.8.2节中提供的可以操作的3个成员方法,还需要更多的成员,但其他的成员方法和成员属性只需要内部使用,并不需要用户在对象外部操作,所 ...
- 《细说PHP》第四版 样章 第18章 数据库抽象层PDO 3
18.3 PDO的安装 PDO随PHP 5.1版本发行,在PHP 5的PECL扩展中也可以使用.PDO需要PHP 5版本核心面向对象特性的支持,所以它无法在之前的PHP版本中运行.无论如何,在配置P ...
- 划词标注1——使用svg绘制换行文本并自动识别库中字典数据
业务需求 给出一段文本,自动识别出文本中包含的关键字信息,关键字是库里已知的数据,根据类型的不同显示出不同的颜色 业务分析 1)采用css:文本识别出来后,根据识别出的文本更改对应文本的dom,通过更 ...
- 解决上一篇bean.xml中<bean>标签报错“ Error while downloading 'http://www.springframework.org/schema/beans/spring-beans.xsd........”
在xml文件中,头部报错如题 一开始查询,说是头部少了“<?xml version="1.0" encoding="UTF-8"?>”,但是我并没有 ...
- laravel中控制器的创建和使用(五)
laravel中我们可以使用 artisan 命令来帮助我们创建控制器文件. php artisan make:controller TestController TestController 控制器 ...
- Java 生态圈知识汇总
原文地址:github.com/aalansehaiy… 前言 有人认为编程是一门技术活,要有一定的天赋,非天资聪慧者不能及也.其实不然,笔者虽是计算机专业出身,但工作年限并不长,对于技术这碗饭有一些 ...
- Awesome Java: Github上关于Java相关的工具
Awesome Java 这是Github上关于Java相关的工具,框架等等资源集合. 原文参考: https://github.com/akullpp/awesome-java. @pdai 最全的 ...
- Web前端基础(7):JavaScript(一)
1. JavaScript概述 1.1 JavaScript历史背景介绍 布兰登 • 艾奇(Brendan Eich,1961年-),1995年在网景公司,发明的JavaScript. 一开始Java ...
- 盲法介绍及python盲打练习系统
目录 一:盲打简介与优点 二:如何练习 三:键盘字母排列顺序的口诀 四:python打字练习系统 一:盲打简介与优点 简介:盲打是指打字的时候不用看键盘或看稿打字时的视线不用来回于文稿和键盘之间的 ...
- IOC控制反转、Unity简介
参考博客地址: Unity系列文章,推荐:http://www.cnblogs.com/qqlin/archive/2012/10/16/2717964.html https://www.cnblog ...