题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数.

期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 $\times 1$ )然后累加.

然而,直接求通电的概率不是很好求,所以可以求不通电的概率,然后 $1$ 减去这个就是通电的概率了~

先假定以 $1$ 为根,令 $f[i]$ 表示仅考虑 $i$ 的子树及 $i$ 的影响时 $i$ 充不到电的概率.

则有: $f[i]=(1-q[i])\prod_{e\in(u,v)}(1-p[i]+p[i]f[i])$

而在 $i=1$ 时,$f[i]$ 就是 $1$ 号点不通电的概率,但是对于其余所有点,我们还需考虑父亲的影响:考虑换根dp

令 $g[i]$ 表示 $i$ 点的最终答案,即考虑所有情况下 $i$ 点不通电的概率.

那么,当 $i=1$ 时,$g[1]=f[1]$

而 $i\neq1$ 时,令 $p$ 表示只考虑父亲对 $i$ 的影响,而 $p=\frac{g[fa]}{1-p[e]+p[e]f[i]}$ $e$ 为 $i$ 到 $fa$ 的边.

则有 $g[i]=f[i]\times (1-p[e]+p[e]\times p)$

求完之后再累加一下即可.

#include <bits/stdc++.h>
#define N 500002
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,edges;
double f[N],g[N],perc[N<<1],q[N];
int hd[N],to[N<<1],nex[N<<1];
void add(int u,int v,double c)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,perc[edges]=c;
}
void dfs1(int u,int ff)
{
f[u]=1-q[u];
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==ff) continue;
dfs1(v,u);
f[u]*=(1-perc[i]+perc[i]*f[v]);
}
}
void dfs2(int u,int ff,int j)
{
if(u==1) g[u]=f[u];
else
{
double p=g[ff]/(1-perc[j]+perc[j]*f[u]);
g[u]=f[u]*(1-perc[j]+perc[j]*p);
}
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==ff) continue;
dfs2(v,u,i);
}
}
int main()
{
// setIO("input");
int i,j;
scanf("%d",&n);
for(i=1;i<n;++i)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z),add(x,y,(double)z/100),add(y,x,(double)z/100);
}
for(i=1;i<=n;++i) scanf("%lf",&q[i]), q[i]/=100;
dfs1(1,0);
dfs2(1,0,0);
double ans=0;
for(i=1;i<=n;++i) ans+=1.0-g[i];
printf("%.6lf",ans);
return 0;
}

  

bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  4. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  5. ●BZOJ 3566 [SHOI2014]概率充电器

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...

  6. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  7. bzoj 3566 [SHOI2014]概率充电器——树型

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...

  8. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  9. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. SpringCloud之熔断器Hystrix及服务监控Dashboard

    目的:     服务雪崩效应 服务熔断服务降级 Hystrix默认超时时间设置 Hystrix服务监控Dashboard 服务雪崩效应 雪崩效应就是一种不稳定的平衡状态也是加密算法的一种特征,它指明文 ...

  2. scope:provided影响子依赖

    一.问题 在上一篇<SpringBoot项目启动不走内嵌容器>中发现,provided会影响子依赖. 标记为scope:provided的jar在编译和运行时有作用,表明了运行时depen ...

  3. Gym102028G Shortest Paths on Random Forests 生成函数、多项式Exp

    传送门 神仙题-- 考虑计算三个部分:1.\(n\)个点的森林的数量,这个是期望的分母:2.\(n\)个点的所有森林中存在最短路的点对的最短路径长度之和:3.\(n\)个点的所有路径中存在最短路的点对 ...

  4. kubernetes第八章--NFS PersistentVolume

  5. 移动端vue2.5去哪儿项目-常见问题整理

    一.项目中遇到的问题.难点及解决方式 1. 移动端开发中的1px边框问题,由于在不同设备屏幕上,可能会使得1px实际在移动端显示不是1px,怎么解决? 2. 移动端click点击事件,会延迟300ms ...

  6. ssh修改端口

    安装防火墙 sudo yum -y install firewald sudo systemctl start firewald.service sudo firewall-cmd --list-al ...

  7. ubuntu安裝postman遇到問題

    @ubuntupc:~/Postman/app$ sudo ./Postman ./Postman: error while loading shared libraries: libgconf-2. ...

  8. c# String类

  9. 加密类型、数据加密解密过程以及CA创建

    对称加密算法 对称加密:加密和解密使用同一个密钥 DES:Data Encryption Standard,56bits 3DES: AES:Advanced (, , 256bits) Blowfi ...

  10. nginx编译安装之-./configure 参数详解

    参考官方文档 http://nginx.org/en/docs/configure.html --with开头的,默认是禁用的(没启动的,想使用的话需要在编译的时候加上) --without开头的,默 ...