——转载网络

在科学计算和工程应用中,经常会遇到需要拟合一系列的离散数据,最近找了很多相关的文章方法,在这里进行总结一下其中最完整、几乎能解决所有离散参数非线性拟合的方法

第一步:得到散点数据

根据你的实际问题得到一系列的散点

例如:

x=[3.2,3.6,3.8,4,4.2,4.8,5,5.4,6.2,6.4,6.6,6.9,7.1]';%加上一撇表示对矩阵的转置
y=[0.38,0.66,1,0.77,0.5,0.66,0.83,1,0.71,0.71,1,0.87,0.83]';

第二步:确定函数模型

根据上述的实际散点确定应该使用什么样的曲线,或者说是想要模拟的曲线

t=[3.2,3.6,3.8,4,4.2,4.8,5,5.4,6.2,6.4,6.6,6.9,7.1]';
tt=[0.38,0.66,1,0.77,0.5,0.66,0.83,1,0.71,0.71,1,0.87,0.83]'; plot(t,tt,'.');%得到散点图

散点图如下所示:

我们已知现存的几种典型的(也是绝大多数情况下的函数模型)

选定一个与散点图像相匹配的函数模型,在此例中我们选择典型的S型曲线模型y= 1/(a+b*e^(-x)),其实此处的函数模型可以任意。

第三步:确定选用函数模型中的未知参数

首先了解一下matlab中的inline函数,inline是用来定义内联函数的
比如说:

y=inline('sin(x)','x') %第一个参数是表达式,第二个参数是函数变量
y(0) %计算sin(0)的值
y(pi) %计算sin(pi)的值
q=quad(y,0,1); %计算sin(x) 在0到1上的积分

之后,我们在代码中进行函数的定义

x=[3.2,3.6,3.8,4,4.2,4.5,4.8,5,5.3,5.4,5.6,5.8,6,6.2,6.4,6.6,6.9,7.1]';
y=[0.38,0.66,1,0.77,0.5,0.33,0.66,0.83,0.33,1,0.33,0.5,0.33,0.71,0.71,1,0.87,0.83]'; myfunc = inline('1./(beta(1)+beta(2).*exp(-x))','beta','x');%三个参数分别为:函数模型(注意需要使用点除和点乘),待定系数,自变量 beta0 = [0.2,0.2]';%待定系数的预估值
beta = nlinfit(x,y,myfunc,beta0);%

其中,beta返回了非线性拟合之后的待定系数,beta(1)和beta(2)表示待定系数,可以为任意数量的扩展beta(n),也就说明了选择函数模型的自由性,甚至可以有100个参数!

beta0表示的是函数模型中待定系数的预估值,可以任意设定

matlab 中的nlinfit(x,y,f,a)函数:用于拟合非线性表达式的函数
f:符号函数句柄,如果是以m文件的形式调用的时候,别忘记加@.这里需要注意,f函数的返回值是和y匹对的,即拟合参数的标准是(f-y)^2取最小值,具体看下面的例子
a:最开始预估的值(预拟合的未知参数的估计值)。如上面的问题如果我们预估A为1,B为2,则a=[1 2]
x:我们已经获知的x的值
y:我们已经获知的x对应的y的值(这部分不懂的在matlab中help命令进行了解)

求解出beta的大小:beta(1) = 1.1562 beta(2) = 15.1875;

画图:使用plot()函数

t=[3.2,3.6,3.8,4,4.2,4.8,5,5.4,6.2,6.4,6.6,6.9,7.1]';
tt=[0.38,0.66,1,0.77,0.5,0.66,0.83,1,0.71,0.71,1,0.87,0.83]'; plot(t,tt,'.');
hold on%保证同时显示 x = 0:0.01:8;
y = 1./(1.1562+15.1875.*exp(-x)); plot(x,y);

结果:是不是很棒!~,另外可以自行加上对应的横纵坐标内容,这里就不多说了。

总结一下matlab非线性拟合散点图的过程:得到散点数据=>确定函数模型=>求解函数模型的待定系数=>得到拟合函数的具体形式=>画出拟合图像

=========================================================================================

用过Matlab的拟合、优化和统计等工具箱的网友,会经常遇到下面几个名词:

SSE(和方差、误差平方和):The sum of squares due to error
MSE(均方差、方差):Mean squared error
RMSE(均方根、标准差):Root mean squared error
R-square(确定系数):Coefficient of determination
Adjusted R-square:Degree-of-freedom adjusted coefficient of determination

下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!

一、SSE(和方差)
该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下

SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样

二、MSE(均方差)
该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下

三、RMSE(均方根)
该统计参数,也叫回归系统的拟合标准差,是MSE的平方根,就算公式如下

在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。从下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!

四、R-square(确定系数)
在讲确定系数之前,我们需要介绍另外两个参数SSR和SST,因为确定系数就是由它们两个决定的
(1)SSR:Sum
of squares of the regression,即预测数据与原始数据均值之差的平方和,公式如下

(2)SST:Total sum of squares,即原始数据和均值之差的平方和,公式如下

细心的网友会发现,SST=SSE+SSR,呵呵只是一个有趣的问题。而我们的“确定系数”是定义为SSR和SST的比值,故

其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定系数”的正常取值范围为[0
1],越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好。

matlab 万能实用的非线性曲线拟合方法的更多相关文章

  1. MATLAB实例:非线性曲线拟合

    MATLAB实例:非线性曲线拟合 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 用最小二乘法拟合非线性曲线,给出两种方法:(1)指定非线性函数,(2) ...

  2. [转]js中几种实用的跨域方法原理详解

    转自:js中几种实用的跨域方法原理详解 - 无双 - 博客园 // // 这里说的js跨域是指通过js在不同的域之间进行数据传输或通信,比如用ajax向一个不同的域请求数据,或者通过js获取页面中不同 ...

  3. MATLAB中多行注释的三种方法

    MATLAB中多行注释的三种方法 A. %{ 若干语句 %} B. 多行注释: 选中要注释的若干语句, 编辑器菜单Text->Comment, 或者快捷键Ctrl+R 取消注释: 选中要取消注释 ...

  4. MATLAB(1)——基本调试方法(Debug)

    作者:桂. 时间:2017-02-28  07:06:30 链接:http://www.cnblogs.com/xingshansi/articles/6477185.html 声明:转载请注明出处, ...

  5. MATLAB读取写入文本数据最佳方法 | Best Method for Loading & Saving Text Data Using MATLAB

    MATLAB读取文件有很多方法.然而笔者在过去进行数据处理中,由于函数太多,相互混杂,与C#,Python等语言相比,反而认为读取文本数据比较麻烦.C#和Python等高级语言中,对于大部分的文本数据 ...

  6. Python实用日期时间处理方法汇总

    这篇文章主要介绍了Python实用日期时间处理方法汇总,本文讲解了获取当前datetime.获取当天date.获取明天/前N天.获取当天开始和结束时间(00:00:00 23:59:59).获取两个d ...

  7. 使用MATLAB对图像处理的几种方法(上)

    实验一图像的滤波处理 一.实验目的 使用MATLAB处理图像,掌握均值滤波器和加权均值滤波器的使用,对比两种滤波器对图像处理结果及系统自带函数和自定义函数性能的比较,体会不同大小的掩模对图像细节的影响 ...

  8. phpcms万能字段如何使用php方法

    来自:http://www.tantengvip.com/2013/12/phpcms-php-function/ phpcms后台内容模块->模型管理->添加字段功能很强大,你只需在ph ...

  9. matlab eps中文乱码的解决方法

    直接存成eps总是乱码 最优解决方法是matlab print 保存成jpg,之后用adobe  acrobat pro 打开jpg文件另存为eps

随机推荐

  1. Pycharm专业版配置远程服务器并自动同步代码

    一.使用场景 如果每次都在本机上面写代码,然后传到服务器上面,在服务器上面运行就太麻烦了.这样的方式十分繁琐,效率很低. 因此,希望可以像下面一样操作: 可以直接在本机上码代码 自动将代码同步到远程服 ...

  2. Python 获取本月的最后一天

    一.需求 现在有一个场景,需要每月的最后一天,发送一封邮件. 二.获取本月最后一天 有没有办法使用Python的标准库轻松确定(即一个函数调用)给定月份的最后一天? 答案是有的,使用 datetime ...

  3. GOF 的23种JAVA常用设计模式总结 02 UML中的类图与类图之间的关系

    统一建模语言UML 统一建模语言(Unified Modeling Language,UML)是用来设计软件蓝图的可视化建模语言,1997 年被国际对象管理组织(OMG)采纳为面向对象的建模语言的国际 ...

  4. oracle数据库 部分函数的用法

    select * from tab; //获取当前用户的数据库的所有表名 select sys_guid(),UserName from TESTLIKUI; //获取guid select sys_ ...

  5. Linux用户组笔记整理

    一.Linux用户组概念 Linux用户组(group)就是具有相同操作权限范围的Linux用户管理起来: 比如有时我们要让同一类用户具有相同的权限,比如查看.修改某一文件或执行某个命令, 这时我们需 ...

  6. springboot笔记09——使用aop

    什么是AOP? aop(Aspect Oriented Programming)面向切面编程,是OOP(Object-Oriented Programing,面向对象编程)的补充和完善.OOP引入封装 ...

  7. MQTT协议中的topic

    1.MQTT协议中的topic 定阅与发布必须要有主题,只有当定阅了某个主题后,才能收到相应主题的payload,才能进行通信. 2. 主题层级分隔符--"/" 主题层级分隔符使得 ...

  8. iOS - 编译WebRTC.a静态库

    编译WebRTC.a静态库 编译的方式,我看了几个帖子,什么方法都有,这里我根据我的需求,说说我的做法.我的主要目的是因为网上找不到.a模式的webrtc的静态库,都是framework,所以我才自己 ...

  9. 基于JMeter的Quick Easy FTP Server性能测试

    FTP性能测试 1.引言 1.1背景说明 本测试选用的是一个小型的FTP服务器软件:Quick Easy FTP Server.Quick Easy FTP Server是一个全中文的FTP服务器软件 ...

  10. 过滤器+用session验证是否登陆过

    过滤器: public class MyActionFilter : ActionFilterAttribute//继承ActionFilterAttribute类 { public override ...