数据分析之前首先要保证数据集的质量,missingno库提供了一个灵活易用的可视化工具来观察数据缺失情况,是基于matplotlib的,接受pandas数据源

快速开始

样例数据使用 NYPD Motor Vehicle Collisions Dataset 数据集. 运行下面命令获得数据

pip install quilt
quilt install ResidentMario/missingno_data

加载数据到内存

from quilt.data.ResidentMario import missingno_data
collisions = missingno_data.nyc_collision_factors()
collisions = collisions.replace("nan", np.nan)

有几个主要函数来不同方式的可视化展示数据集数据缺失情况

Matrix

Matrix是使用最多的函数,能快速直观地看到数据集的完整性情况,矩阵显示

import missingno as msno
%matplotlib inline
msno.matrix(collisions.sample(250))

右边的迷你图总结了数据集的总的完整性分布,并标出了完整性最大和最小的点

最多支持50列

可以通过figsize指定图像大小,例如这样msno.matrix(collisions.sample(250),figsize=(12,5))

如果数据是时序的,那可以用freq参数

null_pattern = (np.random.random(1000).reshape((50, 20)) > 0.5).astype(bool)
null_pattern = pd.DataFrame(null_pattern).replace({False: None})
msno.matrix(null_pattern.set_index(pd.period_range('1/1/2011', '2/1/2015', freq='M')) , freq='BQ')

Bar Chart

msno.bar可以简单的展示无效数据的条形图

msno.bar(collisions.sample(1000))

Heatmap

热图

两个变量的无效相关范围从-1(如果一个变量出现,另一个肯定没有)到0(出现或不出现的变量对彼此没有影响)到1(如果一个变量出现,另一个肯定也是)

数据全缺失或全空对相关性是没有意义的,所以就在图中就没有了,比如date列就没有出现在图中

大于-1和小于1表示有强烈的正相关和负相关,但是由于极少数的脏数据所以并不绝对,这些例外的少数情况需要在数据加工时候予以注意

热图方便观察两个变量间的相关性,但是当数据集变大,这种结论的解释性会变差

Dendrogram

树状图

树状图采用由scipy提供的层次聚类算法通过它们之间的无效相关性(根据二进制距离测量)将变量彼此相加。在树的每个步骤中,基于哪个组合最小化剩余簇的距离来分割变量。变量集越单调,它们的总距离越接近0,并且它们的平均距离越接近零

在0距离处的变量间能彼此预测对方,当一个变量填充时另一个总是空的或者总是填充的,或者都是空的

树叶的高度显示预测错误的频率

和矩阵Matrix一样,只能处理50个变量,但是通过简单的转置操作即可处理更多更大的数据集

Python可视化查看数据集完整性: missingno库(用于数据分析前的数据检查)的更多相关文章

  1. 基于pandas python的美团某商家的评论销售数据分析(可视化)

    基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts i ...

  2. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

  3. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

  4. Python可视化库-Matplotlib使用总结

    在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...

  5. 【转】Python 可视化神器-Plotly Express

    转自:https://mp.weixin.qq.com/s/FNpNJSMK5Vs8pwi0PbbBzw 说明:图片无法直接复制,请查看原文 导读:Plotly Express 是一个新的高级 Pyt ...

  6. 推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法. 受 Seaborn 和 ggplot2 的启发,它专门 ...

  7. 高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...

  8. 数据分析之---Python可视化工具

    1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...

  9. Python 可视化工具 Matplotlib

    英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...

随机推荐

  1. chrom代理插件

    1.SwitchyOmega 2.Resource Override

  2. 0629 Flink Meetup 北京站 PPT下载

    工程实用问题解决方案介绍,实用

  3. webapi添加basic认证

      BasicAbstractAuthorize:抽象类,子类中校验用户名密码,并创建Principal BasicAuthorize:实现类 //base.OnAuthorization(),此方法 ...

  4. html--前端jquery初识

    一.把 jQuery 添加到您的网页如需使用 jQuery,需要下载 jQuery 库,然后把它包含在希望使用的网页中.jQuery 库是一个 JavaScript 文件,您可以使用 HTML 的 & ...

  5. Laravel 推荐-基础入门+实战+拓展视频教程

    1.laravel基础 1.Composer:类库管理神器 - Laravel的安装和配置 2.路由:地址和方法的小媒人 - 基础路由 3.控制器:管家婆 - 基础用法 4.视图:最终结果输出 5.b ...

  6. 使用zeebe DebugHttpExporter 查看zeebe 工作流信息

    zeebe 提供了一个DebugHttpExporter 可以方便的查看部署以及wokrflow 运行信息 以下是一个简单的运行试用,同时集成了prometheus,添加了一个简单的grafana d ...

  7. day 29

    Let the dead have the immortality of fame, but the living the immortality of love. 让逝者拥有不朽的荣誉,让生者拥有不 ...

  8. Linux性能优化实战学习笔记:第三十一讲

    一.上节回顾 上一节,我们一起回顾了常见的文件系统和磁盘 I/O 性能指标,梳理了核心的 I/O 性能观测工具,最后还总结了快速分析 I/O 性能问题的思路. 虽然 I/O 的性能指标很多,相应的性能 ...

  9. [LeetCode] 1123. Lowest Common Ancestor of Deepest Leaves 最深叶结点的最小公共父节点

    Given a rooted binary tree, return the lowest common ancestor of its deepest leaves. Recall that: Th ...

  10. 【微信小程序】手写索引选择器(城市列表,汽车品牌选择列表)

    摘要: 小程序索引选择器,点击跳转相应条目,索引可滑动,滑动也可跳转 场景:城市选择列表, 汽车品牌选择列表 所用组件: scroll-view(小程序原生) https://developers.w ...