传送门

思路:

最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价。

那么转移方程就有:

\[dp(i,j)=min\{dp(k,j-1)+(sumT_i+S*j)*(sumC_i-sumC_k)\}
\]

为什么有个\(S*j\)呢,因为前面的批次启动会对后面的答案有影响。

但是分析复杂度是\(O(n^3)\)的,肯定不行。

考虑一下为什么需要第二个状态呢?是为了消除后效性,因为后面的状态不知道总共启动了几次。

但我们可以把费用提前计算,一次启动,那么对于后面所有的机器都会有贡献,我们提前把这个贡献算了,后面就可以不管这个了,也就是强制消除后效性

所以变换后的\(dp\)式子就为:

\[dp(i)=min\{dp(j)+sumT_i*(sumC_i-sumC_j)+S*(sumC_n-sum_j)\}
\]

其实这样已经可以通过洛谷的数据了,但这还不够!我们还可以优化。

观察\(dp\)式子,后面加上的部分为\(i,j\)相关变量的乘积形式,所以我们可以考虑斜率优化dp。

将\(i,j\)变量分离,有:

\[dp(j)=(s+sumT_i)*sumC_j+dp_i-sumT_i*sumC_i-s*sumC_n
\]

显然这个式子直接用队列维护一个斜率不断增加的下凸壳即可。

时间复杂度就为\(O(n)\)了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5005, MOD = 1e9 + 7;
int n, s;
int sumt[N], sumc[N];
int q[N], dp[N];
int main() {
#ifdef heyuhhh
freopen("input.in", "r", stdin);
#else
ios::sync_with_stdio(false); cin.tie(0);
#endif
cin >> n >> s;
for(int i = 1; i <= n; i++) {
int t, c; cin >> t >> c;
sumt[i] = sumt[i - 1] + t;
sumc[i] = sumc[i - 1] + c;
}
int l = 1, r = 1; q[1] = 0;
for(int i = 1; i <= n; i++) {
while(l < r && dp[q[l + 1]] - dp[q[l]] <= (s + sumt[i]) * (sumc[q[l + 1]] - sumc[q[l]])) ++l;
dp[i] = dp[q[l]] - sumt[i] * sumc[q[l]] - s * sumc[q[l]] + sumt[i] * sumc[i] + s * sumc[n];
while(l < r && (dp[i] - dp[q[r]]) * (sumc[q[r]] - sumc[q[r - 1]]) <= (dp[q[r]] - dp[q[r - 1]]) * (sumc[i] - sumc[q[r]])) --r;
q[++r] = i;
}
cout << dp[n];
return 0;
}

洛谷P2365 任务安排(斜率优化dp)的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  3. [洛谷 P2365] 任务安排 (线性dp)

    3月14日第二题!! 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  4. bzoj 2726 任务安排 斜率优化DP

    这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...

  5. [SDOI2012]任务安排 - 斜率优化dp

    虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...

  6. 洛谷P2365 任务安排 [解法二 斜率优化]

    解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...

  7. 洛谷 P2365 任务安排【dp】

    其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时 ...

  8. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  9. [洛谷P2365] 任务安排

    洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...

随机推荐

  1. win7 64位平台编译的程序在XP 32位平台无法运行的解决方法

    win7 64位平台编译的程序在XP 32位平台无法运行的解决方法 vs2010的开发环境,制作了一个DLL库.但DLL在XP 32位平台一直无法使用.解决方法如下: 右键项目,属性->配置属性 ...

  2. MySQL实战45讲学习笔记:第二十二讲

    一.引子 不知道你在实际运维过程中有没有碰到这样的情景:业务高峰期,生产环境的 MySQL 压力太大,没法正常响应,需要短期内.临时性地提升一些性能. 我以前做业务护航的时候,就偶尔会碰上这种场景.用 ...

  3. MongoDB出现The default storage engine 'wiredTiger' is not available之问题解决

    问题描述:低版本MongoDB存在该问题(版本为3.x),高版本则无该问题. 参考解决问题链接:MongoDB学习—(1)安装时出现The default storage engine ‘wiredT ...

  4. iphone 移动端操作记录

    iPhone和Safari浏览器的后退按钮操作,是直接载入缓存中的页面,不会加载js文件,不会执行ready,onload函数,但是加载html页面会跑pageshow事件,因此有回退动作需要重新加载 ...

  5. Vue官方文档笔记(二)

    23.$refs是什么东东? 通过在标签上设置ref属性,然后在Vue实例方法中可以通过$refs拿到这些标签,如: <input ref="input"> metho ...

  6. Git基础-第2章

    简单的Git基础概念: repository: 仓库 track:  跟踪 stage: 暂存 commit:    提交 push:        推送 pull:    拉取 一.获取Git仓库 ...

  7. navicat for Mysql查询数据不能直接修改

    navicat for Mysql查询数据不能直接修改 原来的sql语句: <pre> select id,name,title from table where id = 5;</ ...

  8. 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)

    [BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...

  9. Mysql系列(十)—— 性能分析工具profiling

    转载自:http://www.ywnds.com/?p=8677 explain是从mysql怎样解析执行sql的角度分析sql优劣.profiling是从sql执行时资源使用情况的角度来分析sql. ...

  10. ASP.NET Core 中的 Razor 文件编译

    asp .net core mvc 3.0 在编译的时候做了一些改变,有些view视图更改需要重新编译,你也可以配置运行时编译,不用每次更改都去重新生成,具体代码如下,从官方文档看到,做个记录. Ra ...