参考:https://christophm.github.io/interpretable-ml-book/proto.html

EML简介

Example-based Machine Learning (EML) 是从数据集中选择特殊的样本来进行学习。下面看几个例子来理解:

  • 一个医生给一个病人看病,该病人咳嗽症状与常见的不太一样,而且发烧严重。这让医生想起了之前的一个病人也是这种症状,于是他怀疑该病人可能和之前的那个病人是同样的病因。

  • 一个程序猿接到了一个新的客户的需求。他经过分析后发现,这个需求很大部分与之前的一个项目类似,于是他打算基于原来的项目重新开发这个新的项目。

上面例子遵循的一个原则是:如果B事件和A事件类似,而且A事件会导致Y事件发生,那么B事件也有可能让Y事件发生。

我们看看有哪些算法遵循上面的原则:

  • 决策树:根据数据在各种重要的特征的相似性来将数据划分到各个叶子节点中去。当有新的数据来的时候,根据样本之间的相似性进行判断。
  • KNN:该算法更好理解,就是计算新样本与各个样本之间的距离,从最相近的前K个样本中选出最相近的样本做出预测。

下面介绍各种EML算法。

Counterfactual Method

Counterfactual简单理解就是反事实(思考或解释)。人类经常会这样反事实的思考,例如我们一早坐下来,啜一口咖啡,然后就问自己,如果我生在南非而不是美国的话,生活会变成怎样,如果地球的轨道离太阳的距离缩短几干米,世界又会变成怎样。

例子

那如何应用到机器学习中去呢?假如你现在有一套房子出租,你已知房子面积(20平米),年龄(10年),位置(深山老林),家居情况,房子布局等情况,并基于这些信息构建了一个房租预测模型,结果预测为每个月只能租100元人民币,你觉得这怎么能行,这跟你心中的2000一个月相差甚远。于是你调整各种参数来看房租的变化,你把房子面积设置为100平米,结果预测为10000元每月,你看到结果后满心欢喜,但是很快认清了现实,因为这不可能。于是你微调房子布局,例如增大客厅面积,或者增设厨房,又或者换上土豪色的地板,这些微调都使得预测的房子涨到了你所期望的2000元每月。以上意淫就是所谓的反事实。

形式化表达

\[
L\left(x, x^{\prime}, y^{\prime}, \lambda\right)=\lambda \cdot\left(\hat{f}\left(x^{\prime}\right)-y^{\prime}\right)^{2}+d\left(x, x^{\prime}\right)
\]

上面的\(x,x'\)分别表示真实数据值和反事实数据值,\(y'\)表示预期的输出,\(\hat{f}(x')\)表示模型对反事实数据的预测值。

第一项表示模型预测值和预期输出值之间的差距,简单理解就是你YY你的房子各种修改之后可能的房租和你心目中满意的房租的差距。

第二项表示反事实数据和真实值之间的距离,也就是说你YY的程度大小,如果你YY你的房子面积从20平米变成100平米,这会使得损失函数非常大,所以算法优化过程中会让你这个YY降低。

\(\lambda\)的作用就是在与预期值的接近程度YY的严重程度之间做平衡。当然这个值是很难选取的,所以另一种办法就是你自己设定一个阈值,例如,你希望房租是2000元每月,而且你也知道这很难,所以你觉得1500也还可以。该限制条件形式如下:

\[
\left|\hat{f}\left(x^{\prime}\right)-y^{\prime}\right| \leq \epsilon
\]

最终优化表达式为:

\[
\arg \min _{x^{\prime}} \max _{\lambda} L\left(x, x^{\prime}, y^{\prime}, \lambda\right)
\]

算法评价

优点:

  • 可解释性强:因为通过调整不同的特征值或样本能够得到不同的预测,并且这些预测可能会和预期一致,当不一致的时候也就表示可能达到了某个阈值。
  • 不需要获取数据或者模型,或者说只需模型预测结果就可以了。假如我们是一个房租价格预测模型的提供商,我们只把模型预测的API接口卖给别人,这样我们可以不断赚钱。另外用户用了我们的模型后,发现预测结果真的挺不错的,但是又没办法得到模型结构,于是它可以通过不断调用API来构建输入与输出之间的关系进而理解模型。因此该算法在解释模型预测和保护模型拥有者利益之间做了平衡。

缺点:

  • 罗生门效应:意思是对于一个样本,也许我们对他的若干个属性(例如房子面积,有无厨房等)分别作了不同的修改得到了多个不同的新样本,最后得到的结果可能是都有所提升(房租都提升了)。这个时候你很难说到底是哪个属性起了作用,就好像同一个事件,不同的人会有不同的看法,你很难确定你的角度是全面的。
  • 容忍度\(\epsilon\)也是很难找到合适的,不过这个不一定是方法上错了,也一定程度上取决于数据。
  • 无法处理类别(categorical)特征。虽然可以单独地对每一个特征组合做处理,但是随着特征数量增加,组合特征数量会呈爆炸增长,处理起来也不现实。

Adversarial Example(对抗样本)

Adversarial Example(AE)的作用和Counterfactual Example有点类似,只不过前者是用来对模型进行解释的,而AE是用来迷惑模型的,以此来加强模型的鲁棒性。AE其实也就是最近非常火爆的GAN算法,这里就不做过多介绍了。

Prototypes and Criticisms

Prototype是能够表示所有数据的数据实例,而Criticism则是不能由一组prototypes很好表示出来的数据实例,如下图所示:

求解prototypes的方法有很多,很多聚类算法就可以实现这个,但是大都只能找到prototypes,不能找到criticism。所以下面介绍MMD-critic算法,该算法可以找到prototypes和criticism。

MMD-critic

该算法可以简单总结总如下:

  • 设置prototypes和criticism的数量
  • 使用贪婪搜索找到prototypes(具有代表性的样本)。
  • 使用贪婪搜索找到criticisms(不具代表性的样本)。

MARSGGBO♥原创

如有意合作或学术讨论欢迎私戳联系~
微信:marsggbo
邮箱:marsggbo@foxmail.com




2019-10-06 18:21:35

Example-based Machine Learning是什么?的更多相关文章

  1. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  2. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  3. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  4. Stanford机器学习笔记-7. Machine Learning System Design

    7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to W ...

  5. (转) Graph-powered Machine Learning at Google

        Graph-powered Machine Learning at Google     Thursday, October 06, 2016 Posted by Sujith Ravi, S ...

  6. Advice for applying Machine Learning

    https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post i ...

  7. Practical Machine Learning For The Uninitiated

    Practical Machine Learning For The Uninitiated Last fall when I took on ShippingEasy's machine learn ...

  8. SOME USEFUL MACHINE LEARNING LIBRARIES.

    from: http://www.erogol.com/broad-view-machine-learning-libraries/ http://www.slideshare.net/Vincenz ...

  9. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  10. (转)8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset

    8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset by Jason Brownlee on August ...

随机推荐

  1. Android Studio 之 AndroidViewModel

    AndroidViewModel是ViewModel的一个子类,可以直接调用getApplication(),由此可以访问应用的全局资源. 在 MyViewModel 这个类中,此类直接继承自 And ...

  2. 安装-apache skywalking (java 应用性能监控)

    官网:http://skywalking.apache.org/ 服务器:10.30.31.28 centos 7 jdk 1.8.x ES 5.x 5.0.0-bet a2版本 . http://s ...

  3. xcode选项Build Active Architecture Only的作用

    Build Active Architecture Only 设置: 设置为NO的时候,会导致react-native项目启动失败npx react-native run-ios 根据错误信息 bui ...

  4. nginx+keepalived高可用及双主模式【h】

    高可用有2中方式. 1.Nginx+keepalived 主从配置 这种方案,使用一个vip地址,前端使用2台机器,一台做主,一台做备,但同时只有一台机器工作,另一台备份机器在主机器不出现故障的时候, ...

  5. 二叉树 & 平衡二叉树 算法(Java实现)

    二叉树 比如我要依次插入10.3.1.8.23.15.28.先插入10作为根节点: 然后插入3,比10小,放在左边: 再插入1,比10和3小,放在3左边: 再插入8,比10小,比3大,放在3右边: 再 ...

  6. Java里 equals 和 == 以及 hashcode

    本文探讨的是老掉牙的基础问题,先建个实体类 package com.demo.tools; public class User { private String name; public User(S ...

  7. 《即时消息技术剖析与实战》学习笔记3——IM系统如何保证消息的实时性

    IM 技术经历过几次迭代升级,如图所示: 从简单.低效的短轮询逐步升级到相对效率可控的长轮询: 全双工的 Websocket 彻底解决了服务端的推送问题: 基于 TCP 长连接衍生的 IM 协议,能够 ...

  8. Linux学习笔记之grep命令和使用正则表达式

    0x00 正则表达式概述 正则表达式是描述一些字符串的模式,是由一些元字符和字符组成的字符串,而这些元字符是一些表示特殊意义的字符,即被正则表达式引擎表达的字符表示与其本意不同的一些字符. 0x01  ...

  9. 封装:Windows系统文件图标

    原文:封装:Windows系统文件图标 用途:用于获取文件系统默认图标 using System; using System.Collections.Generic; using System.Dra ...

  10. Options of the DB storage of prometheus

    参考: // Options of the DB storage. type Options struct { // The timestamp range of head blocks after ...