[LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
这道题让求最大子数组之和,并且要用两种方法来解,分别是 O(n) 的解法,还有用分治法 Divide and Conquer Approach,这个解法的时间复杂度是 O(nlgn),那就先来看 O(n) 的解法,定义两个变量 res 和 curSum,其中 res 保存最终要返回的结果,即最大的子数组之和,curSum 初始值为0,每遍历一个数字 num,比较 curSum + num 和 num 中的较大值存入 curSum,然后再把 res 和 curSum 中的较大值存入 res,以此类推直到遍历完整个数组,可得到最大子数组的值存在 res 中,代码如下:
C++ 解法一:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN, curSum = ;
for (int num : nums) {
curSum = max(curSum + num, num);
res = max(res, curSum);
}
return res;
}
};
Java 解法一:
public class Solution {
public int maxSubArray(int[] nums) {
int res = Integer.MIN_VALUE, curSum = 0;
for (int num : nums) {
curSum = Math.max(curSum + num, num);
res = Math.max(res, curSum);
}
return res;
}
}
题目还要求我们用分治法 Divide and Conquer Approach 来解,这个分治法的思想就类似于二分搜索法,需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取最大的那一个,代码如下:
C++ 解法二:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.empty()) return ;
return helper(nums, , (int)nums.size() - );
}
int helper(vector<int>& nums, int left, int right) {
if (left >= right) return nums[left];
int mid = left + (right - left) / ;
int lmax = helper(nums, left, mid - );
int rmax = helper(nums, mid + , right);
int mmax = nums[mid], t = mmax;
for (int i = mid - ; i >= left; --i) {
t += nums[i];
mmax = max(mmax, t);
}
t = mmax;
for (int i = mid + ; i <= right; ++i) {
t += nums[i];
mmax = max(mmax, t);
}
return max(mmax, max(lmax, rmax));
}
};
Java 解法二:
public class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 0) return 0;
return helper(nums, 0, nums.length - 1);
}
public int helper(int[] nums, int left, int right) {
if (left >= right) return nums[left];
int mid = left + (right - left) / 2;
int lmax = helper(nums, left, mid - 1);
int rmax = helper(nums, mid + 1, right);
int mmax = nums[mid], t = mmax;
for (int i = mid - 1; i >= left; --i) {
t += nums[i];
mmax = Math.max(mmax, t);
}
t = mmax;
for (int i = mid + 1; i <= right; ++i) {
t += nums[i];
mmax = Math.max(mmax, t);
}
return Math.max(mmax, Math.max(lmax, rmax));
}
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/53
类似题目:
Best Time to Buy and Sell Stock
Longest Turbulent Subarray
参考资料:
https://leetcode.com/problems/maximum-subarray/
https://leetcode.com/problems/maximum-subarray/discuss/20211/Accepted-O(n)-solution-in-java
https://leetcode.com/problems/maximum-subarray/discuss/20193/DP-solution-and-some-thoughts
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 53. Maximum Subarray 最大子数组的更多相关文章
- [leetcode]53. Maximum Subarray最大子数组和
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- LeetCode 53. Maximum Subarray最大子序和 (C++)
题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
随机推荐
- servlet中的IllegalStateException
IllegalStateException在java web开发中比较常见,IllegalStateException的根本原因是java servlet在提交响应后,还尝试写内容. 所以避免Ille ...
- Mybatis中的association用法
这篇文章我们将来学习一些 association 用法 表结构 DROP TABLE IF EXISTS `student`; CREATE TABLE `student` ( `id` int(1 ...
- 【模板】gcd和exgcd
1. gcd: int gcd(int a,int b) { return !b?a:gcd(b,a%b); } exgcd: int exgcd(int a,int b,int& x,int ...
- LinkedHashMap实现和LRU
HashMap是Java中叫法,在Python中就叫Dict 在Python的标准库中实现了LinkedHashMap,它的名字叫OrderedDict,它的源码比较简单,OrderedDict继承了 ...
- kali渗透综合靶机(十五)--Breach-1.0靶机
kali渗透综合靶机(十五)--Breach-1.0靶机 靶机下载地址:https://download.vulnhub.com/breach/Breach-1.0.zip 一.主机发现 1.netd ...
- Winforn中设置ZedGraoh的GraphPane恢复到初始比例大小
场景 Winform中实现ZedGraph中曲线右键显示为中文: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/100115292 ...
- 实战Rest API接口测试
一.Android App API接口测试 1.如何学好Android App API接口测试 postman可以用来实现API接口自动化测试,但是也有弊端,无法实现接口测试数据的参数化,为了达到接口 ...
- 关于javascript,多种函数封装!!
1.获取最终的属性 function getStyleAttr(obj, attr){ if(window.getComputedStyle){ return window.getComputedSt ...
- javascript 关于赋值、浅拷贝、深拷贝的个人理解
关于赋值.浅拷贝.深拷贝,以前也思考良久,很多时候都以为记住了,但是,我太难了.今天我特地写下笔记,希望可以完全掌握这个东西,也希望可以帮助到任何想对学习这个东西的同学. 一.栈.堆.指针地址 栈内存 ...
- i春秋四周年福利趴丨一纸证书教你赢在起跑线
i春秋四周年庆典狂欢已接近尾声 作为压轴福利 CISP-PTE认证和 CISAW-Web安全认证 迎来了史无前例的超低折扣 每个行业都有特定的精英证书,例如会计行业考取的是注册会计师证,建筑行业是一级 ...