[LeetCode] 296. Best Meeting Point 最佳开会地点
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
Example:
Input: 1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at(0,0),(0,4), and(2,2):
The point(0,2)is an ideal meeting point, as the total travel distance
of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
这道题让我们求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小,题目中给了提示,让从一维的情况来分析,先看一维时有两个点A和B的情况,
______A_____P_______B_______
可以发现,只要开会为位置P在 [A, B] 区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在 [A, B] 之间,那么距离之和就会大于A和B之间的距离,现在再加两个点C和D:
______C_____A_____P_______B______D______
通过分析可以得出,P点的最佳位置就是在 [A, B] 区间内,这样和四个点的距离之和为AB距离加上 CD 距离,在其他任意一点的距离都会大于这个距离,那么分析出来了上述规律,这题就变得很容易了,只要给位置排好序,然后用最后一个坐标减去第一个坐标,即 CD 距离,倒数第二个坐标减去第二个坐标,即 AB 距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可,参见代码如下:
解法一:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
return minTotalDistance(rows) + minTotalDistance(cols);
}
int minTotalDistance(vector<int> v) {
int res = ;
sort(v.begin(), v.end());
int i = , j = v.size() - ;
while (i < j) res += v[j--] - v[i++];
return res;
}
};
我们也可以不用多写一个函数,直接对 rows 和 cols 同时处理,稍稍能简化些代码:
解法二:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
sort(cols.begin(), cols.end());
int res = , i = , j = rows.size() - ;
while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/296
类似题目:
Minimum Moves to Equal Array Elements II
Shortest Distance from All Buildings
参考资料:
https://leetcode.com/problems/best-meeting-point/
https://leetcode.com/problems/best-meeting-point/discuss/74186/14ms-java-solution
https://leetcode.com/problems/best-meeting-point/discuss/74244/Simple-Java-code-without-sorting.
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 296. Best Meeting Point 最佳开会地点的更多相关文章
- [LeetCode] Best Meeting Point 最佳开会地点
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
- [Swift]LeetCode296. 最佳开会地点 $ Best Meeting Point
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
- 【leetcode】296.Best Meeting Point
原题 A group of two or more people wants to meet and minimize the total travel distance. You are given ...
- 296. Best Meeting Point
题目: A group of two or more people wants to meet and minimize the total travel distance. You are give ...
- 【LeetCode】253. Meeting Rooms II 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 排序+堆 日期 题目地址:https://leetco ...
- 【LeetCode】252. Meeting Rooms 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 排序 日期 题目地址:https://leetcode ...
- 【leetcode】1229.Meeting Scheduler
题目如下: 你是一名行政助理,手里有两位客户的空闲时间表:slots1 和 slots2,以及会议的预计持续时间 duration,请你为他们安排合适的会议时间. 「会议时间」是两位客户都有空参加,并 ...
- [LeetCode] 317. Shortest Distance from All Buildings 建筑物的最短距离
You want to build a house on an empty land which reaches all buildings in the shortest amount of dis ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
随机推荐
- mysql float类型详解
mysql float类型详解float类型长度必须设置3以上 不然会报错 out of range如果设置3 就只是 整数+小数的长度 比方说3.23 3.2等等 3.333就不行了 4位了
- 发布.net core项目 System.AggregateException: 发生一个或多个错误
背景:之前创建.net core webapi项目的时候SDK是2.2的版本,后改成2.1,发布的时候报错. 发布的时候报错,展示的信息是: 其实这里也大致能看到部分信息,但由于信息量太小,没办法知道 ...
- JVM的监控工具之jhat
在上一篇文件文章中讲到了jhap的用法:https://www.cnblogs.com/cheng21553516/p/11223615.html,既然jhap可以转储堆的快照文件, 那么用什么来分析 ...
- 【转载】什么是NVMe?
什么是NVMe? [转载]什么是NVMe:http://storage.it168.com/a2018/0921/5045/000005045252.shtml NVMe是Non-Volatile M ...
- Microsoft.Practices.Unity
// // Summary: // Register a type mapping with the container. // // Parameters: // container: // Con ...
- TinyMCE编辑器图片上传扩展(base64方式),asp.net mvc5
编辑器上传图片一般都是先上传到服务器中,若是用户取消或忘记提交表单就产生一张废图在空间里面,时间一长就产生大量占用空间的无用图片,现在就试试提交前先用base64,提交后,在后台处理编辑器内容中的&l ...
- javascript 关于赋值、浅拷贝、深拷贝的个人理解
关于赋值.浅拷贝.深拷贝,以前也思考良久,很多时候都以为记住了,但是,我太难了.今天我特地写下笔记,希望可以完全掌握这个东西,也希望可以帮助到任何想对学习这个东西的同学. 一.栈.堆.指针地址 栈内存 ...
- web下载附件及修改名称
/** * @param: url 附件地址 * @param: filename 下载后的文件名 */ function download(url, filename) { getBlob(url, ...
- 13 个 NPM 快速开发技巧
摘要: 玩转npm. 作者:前端小智 原文:13 个 npm 快速开发技巧 Fundebug经授权转载,版权归原作者所有. 为了保证的可读性,本文采用意译而非直译. 每天,数以百万计的开发人员使用 n ...
- Linux磁盘分区/格式化/挂载目录
分区及挂载目录 以CentOS7.2为例,一般我们服务端应用部署前需要确认部署机的磁盘空间及挂载目录.操作如下: 如上图,如果操作系统是新装的,未挂盘的话需要先挂载盘.操作如下: fdisk -l # ...