代码

import pandas as pd
import numpy as np dates = pd.date_range('20130101', periods=6)
df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) # 行数,列数,赋值
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan # 以行丢掉
print('-1-')
print(df.dropna(axis=0)) # 有nan就丢 这是默认情况
print('-2-')
print(df.dropna(axis=0, how='any')) # 全是nan再丢
print('-3-')
print(df.dropna(axis=0, how='all')) # 填上
print('-4-')
print(df.fillna(value=0)) # 判断每个的结果
print('-5-')
print(df.isnull()) # 整体内是不是有null
print('-6-')
print(np.any(df.isnull()) == True) # 读取保存数据 read_csv to_csv
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print('-7-')
print(df1)
print(df2)
print(df3) # axis=0 竖向合并
res = pd.concat([df1,df2,df3], axis=0)
print('-8-')
print(res) res = pd.concat([df1,df2,df3], axis=0, ignore_index=True)
print('-9-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4])
print('-10-')
print(df1)
print(df2) # 组合模式
res = pd.concat([df1,df2])
print('-11-')
print(res)
# defalut 并集
res = pd.concat([df1,df2], join='outer')
print('-12-')
print(res)
# 交集
res = pd.concat([df1,df2], join='inner')
print('-13-')
print(res) res = pd.concat([df1,df2], join='inner', ignore_index=True)
print('-14-')
print(res) # axis=1 左右合并 只考虑df1的index
res = pd.concat([df1,df2], axis=1,join_axes=[df1.index])
print('-15-')
print(res) # axis=1 左右合并
res = pd.concat([df1,df2], axis=1)
print('-16-')
print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['b','c','d','e'],index=[2,3,4]) res = df1.append(df2, ignore_index=True)
print('-17-')
print(res) res = df1.append([df2, df3], ignore_index=True)
print('-18-')
print(res) s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
res = df1.append(s1,ignore_index=True) print('-19-')
print(res)

  

输出

-1-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-2-
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-3-
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-4-
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
-5-
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
-6-
True
-7-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-8-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
-9-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
-10-
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:62: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2])
-11-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
d:\Alex\WorkLog\34-deeplearning\myWorks\TransferLearningExample\mofangTransferLearning\1.py:66: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2], join='outer')
-12-
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
-13-
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
-14-
b c d
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
-15-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
-16-
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
-17-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:6201: FutureWarning: Sorting because non-concatenation axis
is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False sort=sort)
-18-
a b c d e
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 1.0 1.0 1.0 1.0 NaN
4 1.0 1.0 1.0 1.0 NaN
5 1.0 1.0 1.0 1.0 NaN
6 NaN 2.0 2.0 2.0 2.0
7 NaN 2.0 2.0 2.0 2.0
8 NaN 2.0 2.0 2.0 2.0
-19-
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0

  

16-numpy笔记-莫烦pandas-4的更多相关文章

  1. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  4. 17-numpy笔记-莫烦pandas-5

    代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...

  5. 13-numpy笔记-莫烦pandas-1

    代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...

  6. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  7. 12-numpy笔记-莫烦基本操作2

    代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...

  8. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  9. Python pandas & numpy 笔记

    记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...

随机推荐

  1. zz“老司机”成长之路:自动驾驶车辆调试实践

    随着自动驾驶技术的发展,一辆新车从被改装到上路需要经过的调试流程也有了许多提升.今天,我希望结合自己之前的调车经验来跟大家分享一下我们是如何将系统的各个模块逐步上车.调试.集成,进而将一辆“新手”车培 ...

  2. js -- 数组的操作(自己的常用备查)

    1.数组的定义 var arr = [],或者 var arr = [1,2,3,4,5] 2.数组的使用 >数组的合并 concat ,,]; ,]; a = a.concat(b); con ...

  3. 解决 ubuntu 开机卡死在输入密码界面 && 键盘鼠标失灵!!

    近期不知安装了什么package,导致 ubuntu 开机后键盘鼠标一直没法用,刚开始以为是 ubuntu 桌面环境崩溃了,后来发现系统能显示连接到网络.时间也在运行,那应该就是键盘鼠标失灵了. 网上 ...

  4. Python复杂对象转JSON

    Python复杂对象转JSON在Python对于简单的对象转json还是比较简单的,如下: import json d = {'a': 'aaa', 'b': ['b1', 'b2', 'b3'], ...

  5. mongodb 更新数据时int32变为double的解决办法 & 教程

    https://www.runoob.com/mongodb/mongodb-mongodump-mongorestore.html mongodb 更新数据时int32变为double的解决办法   ...

  6. Vert.x HTTP 服务器与客户端

    编写HTTP 服务器与客户端 Vert.x让编写非阻塞的HTTP 服务器与客户端变得非常轻松. 创建HTTP 服务器 缺省状况: HttpServer server = vertx.createHtt ...

  7. 初学dubbo遇到的那些坑

    昨天刚接触dubbo,遇到了一些坑,当然,这也与刚从eclipse换到了idea有一定的关系. 首先是maven仓库的问题,c盘下面的.m2文件夹默认的会被开发工具访问,所以要访问自己的本地仓库,.m ...

  8. java9模块不可见问题

    问题描述 jdk.internal.reflect包不可见 问题原因 java9模块化之后,java.base只把jdk.internal.reflect暴露给了少数几个内部包而没有向当前模块暴露. ...

  9. ASP.NET Core系列:JWT身份认证

    1. JWT概述 JSON Web Token(JWT)是目前流行的跨域身份验证解决方案. JWT的官网地址:https://jwt.io JWT的实现方式是将用户信息存储在客户端,服务端不进行保存. ...

  10. Docker 容器命令大全

    容器命令: 命令 描述 attach 将本地标准输入,输出和错误流转到到正在运行的容器 build 从Dockerfile构建映像 commit 根据容器的更改创建新镜像 cp 在容器和本地文件系统之 ...