LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120。
题意简述:
称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素)。
问合法序列个数。
题解:
设颜色为 \(c\) 的珍珠的个数为 \(\mathrm{cnt}_c\),则一个方案合法当且仅当:
\]
先特判 \(2m\le n-D\) 和 \(2m>n\) 的情况,答案分别为 \(D^n\) 和 \(0\)。
那么假设 \(\mathrm{odd}_k\) 为恰好有 \(k\) 个 \(\mathrm{cnt}_c\) 为奇数的方案数,则最终答案为 \(\displaystyle\sum_{i=0}^{n-2m}\mathrm{odd}_i\)。
考虑容斥,设 \(f_k\) 为至少有 \(k\) 个 \(\mathrm{cnt}_c\) 为奇数的方案数,若恰好有 \(j\) 个奇数,会被相应地统计 \(\displaystyle\binom{j}{k}\) 次。
则有:\(\displaystyle f_i=\sum_{j}\binom{j}{i}\mathrm{odd}_j\)。
根据二项式反演,有:
\]
上式是卷积形式,问题转化为求出每一个 \(f_i\)。
考虑出现次数为奇数的颜色的排列方案数的指数型生成函数:\(\mathbf{EGF}\{[0,1,0,1,\ldots]\}\),即 \(\displaystyle\frac{e^x-e^{-x}}{2}\),故有:
\]
考虑 \(e^{ax}=\mathbf{EGF}\{[1,a,a^2,a^3,\ldots]\}\),故有 \(\displaystyle[x^n]e^{ax}=\frac{a^n}{n!}\),带入上式可得:
\]
显然右边是卷积形式,直接计算即可。计算完 \(f\) 再使用卷积计算 \(\mathrm{odd}\) 即可。
代码如下:
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int Mod = 998244353, Inv2 = (Mod + 1) / 2;
const int G = 3, iG = 332748118;
const int MS = 1 << 18;
inline int qPow(int b, int e) {
int a = 1;
for (; e; e >>= 1, b = (LL)b * b % Mod)
if (e & 1) a = (LL)a * b % Mod;
return a;
}
inline int gInv(int b) { return qPow(b, Mod - 2); }
int Inv[MS], Fac[MS], iFac[MS];
inline void Init(int N) {
Fac[0] = 1;
for (int i = 1; i < N; ++i) Fac[i] = (LL)Fac[i - 1] * i % Mod;
iFac[N - 1] = gInv(Fac[N - 1]);
for (int i = N - 1; i >= 1; --i) iFac[i - 1] = (LL)iFac[i] * i % Mod;
for (int i = 1; i < N; ++i) Inv[i] = (LL)Fac[i - 1] * iFac[i] % Mod;
}
int Sz, InvSz, R[MS];
inline int getB(int N) { int Bt = 0; while (1 << Bt < N) ++Bt; return Bt; }
inline void InitFNTT(int N) {
int Bt = getB(N);
if (Sz == (1 << Bt)) return ;
Sz = 1 << Bt, InvSz = Mod - (Mod - 1) / Sz;
for (int i = 1; i < Sz; ++i) R[i] = R[i >> 1] >> 1 | (i & 1) << (Bt - 1);
}
inline void FNTT(int *A, int Ty) {
for (int i = 0; i < Sz; ++i) if (R[i] < i) std::swap(A[R[i]], A[i]);
for (int j = 1, j2 = 2; j < Sz; j <<= 1, j2 <<= 1) {
int wn = qPow(~Ty ? G : iG, (Mod - 1) / j2), w, X, Y;
for (int i = 0, k; i < Sz; i += j2) {
for (k = 0, w = 1; k < j; ++k, w = (LL)w * wn % Mod) {
X = A[i + k], Y = (LL)w * A[i + j + k] % Mod;
A[i + k] -= (A[i + k] = X + Y) >= Mod ? Mod : 0;
A[i + j + k] += (A[i + j + k] = X - Y) < 0 ? Mod : 0;
}
}
}
if (!~Ty) for (int i = 0; i < Sz; ++i) A[i] = (LL)A[i] * InvSz % Mod;
}
inline void PolyConv(int *_A, int N, int *_B, int M, int *_C) {
static int A[MS], B[MS];
InitFNTT(N + M - 1);
for (int i = 0; i < N; ++i) A[i] = _A[i];
for (int i = N; i < Sz; ++i) A[i] = 0;
for (int i = 0; i < M; ++i) B[i] = _B[i];
for (int i = M; i < Sz; ++i) B[i] = 0;
FNTT(A, 1), FNTT(B, 1);
for (int i = 0; i < Sz; ++i) A[i] = (LL)A[i] * B[i] % Mod;
FNTT(A, -1);
for (int i = 0; i < N + M - 1; ++i) _C[i] = A[i];
}
int D, N, M;
int A[MS], B[MS], Ans;
int main() {
scanf("%d%d%d", &D, &N, &M);
if (M + M <= N - D) return printf("%d\n", qPow(D, N)), 0;
if (M + M > N) return puts("0"), 0;
Init(D + 1);
for (int i = 0; i <= D; ++i) A[i] = (LL)qPow((D - i - i + Mod) % Mod, N) * (i & 1 ? Mod - iFac[i] : iFac[i]) % Mod;
for (int i = 0; i <= D; ++i) B[i] = iFac[i];
PolyConv(A, D + 1, B, D + 1, A);
for (int i = 0; i <= D; ++i) A[i] = (LL)A[i] * Fac[D] % Mod * Fac[i] % Mod * iFac[D - i] % Mod * qPow(Inv2, i) % Mod;
for (int i = 0; i <= D; ++i) B[D - i] = i & 1 ? Mod - iFac[i] : iFac[i];
PolyConv(A, D + 1, B, D + 1, A);
for (int i = 0; i <= N - M - M; ++i) Ans = (Ans + (LL)A[D + i] * iFac[i]) % Mod;
printf("%d\n", Ans);
return 0;
}
LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠的更多相关文章
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- @loj - 3120@ 「CTS2019 | CTSC2019」珍珠
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...
- 【LOJ】#3120. 「CTS2019 | CTSC2019」珍珠
LOJ3120 52pts \(N - D >= 2M\)或者\(M = 0\)那么就是\(D^{N}\) 只和数字的奇偶性有关,如果有k个奇数,那么必须满足\(N - k >= 2M\) ...
- loj3120 「CTS2019 | CTSC2019」珍珠
link .... 感觉自己太颓废了....还是来更题解吧...[话说写博客会不会涨 rp 啊 qaq ? 题意: 有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对. ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- 「CTS2019 | CTSC2019」氪金手游 解题报告
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中 ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- LOJ 2743(洛谷 4365) 「九省联考 2018」秘密袭击——整体DP+插值思想
题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/ ...
- LOJ 3045: 洛谷 P5326: 「ZJOI2019」开关
题目传送门:LOJ #3045. 题意简述 略. 题解 从高斯消元出发好像需要一些集合幂级数的知识,就不从这个角度思考了. 令 \(\displaystyle \dot p = \sum_{i = 1 ...
随机推荐
- 8.18 NOIP模拟测试25(B) 字符串+乌鸦喝水+所驼门王的宝藏
T1 字符串 卡特兰数 设1为向(1,1)走,0为向(1,-1)走,限制就是不能超过$y=0$这条线,题意转化为从(0,0)出发,走到(n+m,n-m)且不越过$y=0$,然后就裸的卡特兰数,$ans ...
- Linux性能优化实战学习笔记:第五十二讲
一.上节回顾 上一节,我们一起学习了怎么使用动态追踪来观察应用程序和内核的行为.先简单来回顾一下.所谓动态追踪,就是在系统或者应用程序还在正常运行的时候,通过内核中提供的探针,来动态追踪它们的行为,从 ...
- Zuul整合Swagger,使用ZuulFilter解决下游服务context-path
问题起因:使用Zuul网关服务,需要整合下游系统的swagger,但是下游服务存在context-path配置,无法正确跳转,最后使用ZuulFilter解决. 1.Zuul整合下游swagger 首 ...
- TJOI 2015 概率论(生成函数)
题意 求一棵随机生成的有根二叉树(节点无标号,各种不同构的情况随机出现)叶子结点个数的期望. 思路 用生成函数做是个好题. 我们考虑设 \(n\) 个节点,所有不同构二叉树叶子结点的总和为 ...
- Mac修改hosts方法
总有各种各样的原因需要修改hosts文件,那么就来简介下怎么修改.terminal中打开hosts: sudo vim /private/etc/hosts 打开文件后I开启插入模式,在最后一行添加你 ...
- 微信企业号消息接口PHP SDK
微信企业号消息接口PHP SDK及Demo <?php /* 方倍工作室 http://www.fangbei.org/ CopyRight 2015 All Rights Reserved * ...
- c#中怎样取得某坐标点的颜色
// x,y 分别为x轴,y轴坐标 返回System.Drawing.Color 可以直接显示 public System.Drawing.Color GetPixelColor(int x, int ...
- java,string和list,list和set相互转换
list转string String str= String.join("','", list); list转set Set<String> set = new Has ...
- 是的 你没看错!!!用JAVA为MCU开发物联网程序?
是的 你没看错!!!用JAVA为MCU开发物联网程序? 一直以来,物联网设备这种嵌入式硬件,对于Java软件开发者来说,就是Black Magic Box,什么中断.寄存器,什么 ...
- git 版本(commit) 回退 -- 使用git reset 指令
刚刚提交了三个commit, git reflog显示如下: 最后一个commit在文件末尾加了一行:v3,以此类推: 下面,使用git reset --hard commitID来进行commit回 ...