Problem Here

Solution

这大概是一篇重复累赘的blog吧。

最小权覆盖集=全集-最大权独立集

强制取或不取,可以通过将权值修改成inf或者-inf

然后就用动态dp的套路就行了

动态dp~

#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define MN 100005
#define inf 1000000005
int n,m,v[MN];
struct edge{int to,nex;}e[MN<<1];
int hr[MN],en;
std::set<int> mp[MN];
inline void ins(int f,int t)
{
mp[f].insert(t);
mp[t].insert(f);
e[++en]=(edge){t,hr[f]};hr[f]=en;
e[++en]=(edge){f,hr[t]};hr[t]=en;
}
int mx[MN],siz[MN],top[MN],fa[MN];
void dfs1(int x,int f)
{
siz[x]=1;fa[x]=f;register int i;
for(i=hr[x];i;i=e[i].nex)if(f^e[i].to)
{
dfs1(e[i].to,x);siz[x]+=siz[e[i].to];
if(siz[e[i].to]>siz[mx[x]]) mx[x]=e[i].to;
}
}
void dfs2(int x,int f,int tp)
{
top[x]=tp;if(mx[x]) dfs2(mx[x],x,tp);
register int i;
for(i=hr[x];i;i=e[i].nex)if((e[i].to^f)&&(e[i].to^mx[x])) dfs2(e[i].to,x,e[i].to);
}
struct matrix
{
ll a[2][2];
matrix(){memset(a,0,sizeof a);}
matrix operator * (const matrix &b) const
{
register matrix c;register int i,j,k;
for(i=0;i<2;++i)for(j=0;j<2;j++)for(k=0;k<2;++k)
c.a[i][j]=max(c.a[i][j],b.a[i][k]+a[k][j]);
return c;
}
}t[MN<<2],Ans;
ll g[MN][2],f[MN][2],sum;
int pos[MN],id[MN],dind,st[MN];
void init(int x,int F)
{
register int i;g[x][1]=(ll)v[x];
for(i=hr[x];i;i=e[i].nex)
if((e[i].to^F)&&(e[i].to^mx[x]))
{
init(e[i].to,x);
g[x][0]+=max(f[e[i].to][0],f[e[i].to][1]);
g[x][1]+=f[e[i].to][0];
}
f[x][0]=g[x][0];f[x][1]=g[x][1];
if(mx[x])
{
init(mx[x],x);
f[x][0]+=max(f[mx[x]][0],f[mx[x]][1]);
f[x][1]+=f[mx[x]][0];
}
pos[x]=++dind;id[dind]=x;
if(st[top[x]]==0) st[top[x]]=dind;
}
#define mid ((l+r)>>1)
void build(int k,int l,int r)
{
if(l==r)
{
t[k].a[0][0]=t[k].a[0][1]=g[id[l]][0];
t[k].a[1][0]=g[id[l]][1];t[k].a[1][1]=0ll;
return;
}
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
t[k]=t[k<<1]*t[k<<1|1];
}
void Modify(int k,int l,int r,int x)
{
if(l==r)
{
t[k].a[0][0]=t[k].a[0][1]=g[id[l]][0];
t[k].a[1][0]=g[id[l]][1];t[k].a[1][1]=0ll;
return;
}
if(x<=mid) Modify(k<<1,l,mid,x);
else Modify(k<<1|1,mid+1,r,x);
t[k]=t[k<<1]*t[k<<1|1];
}
matrix query(int k,int l,int r,int a,int b)
{
if(l==a&&r==b) return t[k];
if(b<=mid) return query(k<<1,l,mid,a,b);
if(a>mid) return query(k<<1|1,mid+1,r,a,b);
return query(k<<1,l,mid,a,mid)*query(k<<1|1,mid+1,r,mid+1,b);
}
ll Que()
{
Ans=query(1,1,n,st[1],pos[1]);
return max(Ans.a[0][0],Ans.a[1][0]);
}
inline void change(int x,ll add)
{
g[x][1]+=add;
while(x!=0){
Modify(1,1,n,pos[x]);
matrix tmp=query(1,1,n,st[top[x]],pos[top[x]]);
ll f0=tmp.a[0][0],f1=tmp.a[1][0];
if(top[x]!=1){
g[fa[top[x]]][1]+=f0-f[top[x]][0];
g[fa[top[x]]][0]+=max(f1,f0)-max(f[top[x]][0],f[top[x]][1]);
}
f[top[x]][0]=f0;f[top[x]][1]=f1;
x=fa[top[x]];
}
}
int main()
{
register char ch[5];
n=read(),m=read();scanf("%s",ch+1);
register int i,j,a,b;
for(i=1;i<=n;i++) v[i]=read(),sum+=1ll*v[i];
for(i=1;i<n;i++) j=read(),ins(j,read());
dfs1(1,0);dfs2(1,0,1);init(1,0);build(1,1,n);
while(m--)
{
i=read();j=read();a=read(),b=read();
if(j==0&&b==0&&mp[i].count(a))
{
puts("-1");
continue;
}
change(i,(j==0?1:-1)*inf);
change(a,(b==0?1:-1)*inf);
printf("%lld\n",sum-Que()+1ll*(j==0?1:0)*inf+1ll*(b==0?1:0)*inf);
change(i,(j==0?-1:1)*inf);
change(a,(b==0?-1:1)*inf);
}
return 0;
}

Blog来自PaperCloud,未经允许,请勿转载,TKS!

[luogu 5024] 保卫王国的更多相关文章

  1. [倍增][换根DP]luogu P5024 保卫王国

    题面 https://www.luogu.com.cn/problem/P5024 分析 可以对有限制的点对之间的链进行在倍增上的DP数组合并. 需要通过一次正向树形DP和一次换根DP得到g[0][i ...

  2. 洛谷5024 保卫王国 (动态dp)

    qwq非正解. 但是能跑过. 1e5 log方还是很稳的啊 首先,考虑最普通的\(dp\) 令\(dp1[x][0]表示不选这个点,dp1[x][1]表示选这个点的最大最小花费\) 那么 \(dp1[ ...

  3. [NOIP2018TG]保卫王国

    [NOIP2018TG]保卫王国 BZOJ luogu 当动态dp模板题写的,(全集-最大点权独立集)不能放军队的+inf,必须放军队-inf即可 注意矩阵乘法的顺序问题 #define ll lon ...

  4. noip2018 d2t3 保卫王国 解题报告

    保卫王国 电脑卡懒得把题面挪过来了. 朴素 \[ dp_{i,0}=\sum dp_{s,1}\\ dp_{i,1}=\sum \min(dp_{s,0},dp_{s,1})+p_i \] 然后直接动 ...

  5. LG5024 保卫王国

    题意 题目描述 Z 国有\(n\)座城市,\(n - 1\)条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要 ...

  6. 「NOIP2018」保卫王国

    「NOIP2018保卫王国」 题目描述 有一棵 \(n\) 个点, 点有点权 \(a_i\),\(m\) 组询问, 每次求钦点两个节点必须选或者必须不选后的树上最小点覆盖. \(1 \leq n, m ...

  7. Uoj 441 保卫王国

    Uoj 441 保卫王国 动态 \(dp\) .今天才来写这个题. 设 \(f[u][0/1]\) 表示子树 \(u\) 中不选/选 \(u\) 时的最小权值和,显然有:\(f[u][0]=\sum ...

  8. 竞赛题解 - NOIP2018 保卫王国

    \(\mathcal{NOIP2018}\) 保卫王国 - 竞赛题解 按某一个炒鸡dalao名曰 taotao 的话说: \(\ \ \ \ \ \ \ \ \ "一道sb倍增题" ...

  9. 『保卫王国 树上倍增dp』

    保卫王国 Description Z 国有n座城市,n - 1条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需 ...

随机推荐

  1. 隐马尔可夫模型(HMM)的分类

    1.遍历型(ergodic model) 即每个状态都可以由任意一个状态演变而来,aij>0,for all i , j. 如图: 2.left-right type of HMM 每个状态只能 ...

  2. Java调用WebService方法总结(3)--wsimport调用WebService

    wsimport是JDK自带的把WSDL转成Java的工具,可以很方便的生成调用WebService的代码.文中所使用到的软件版本:Java 1.8.0_191. 1.准备 参考Java调用WebSe ...

  3. 【转载】Java对象的生命周期

    Java对象的生命周期 在Java中,对象的生命周期包括以下几个阶段: 1.      创建阶段(Created) 2.      应用阶段(In Use) 3.      不可见阶段(Invisib ...

  4. 使用layui框架根据字段来设置tr行的背景色

    问题来源:最近在写公司项目时使用layui遇见的问题,老板要求根据td字段来设置整行tr的背景色. 解决:一开始数据比较少的时候只是直接在页面根据js动态判断字段然后来更改背景色,结果能够成功,但是后 ...

  5. CentOS 7 - 里面如何以root身份使用图形界面管理文件?

    nautilus 是gnome的文件管理器,但是如果不是root账号下,权限受限,我们可以通过以下方式以root权限使用! 启动shll,随后在shell里面输入下面命令: sudo nautilus

  6. js javascirpt 数学库、 算法库 (转载)

    提示:国外官网,谷歌浏览器右键可以翻译成中文. 1.math.js 官网:https://mathjs.org/index.html 其它简介:https://www.jianshu.com/p/4f ...

  7. Python学习日记(七) 文件操作

    文件操作: 首先要有一个文件作为对象,例‘文件名’.txt 1.文件路径:例 d:\文件名.txt <1>:绝对路径:从根目录往后的路径 <2>:相对路径:当前目录下的路径有什 ...

  8. 空指针异常:解决 RequestContextHolder.getRequestAttributes()为空的问题

    现象:实现Feign请求拦截器时,执行如下代码,报空指针异常 ServletRequestAttributes attributes = (ServletRequestAttributes) Requ ...

  9. PHP-5.6.8 源码包编译安装

    一.下载源码包后,进行解压 [root@www home]# .tar.bz2 gzip: stdin: not in gzip format tar: Error is not recoverabl ...

  10. 铁力项目mysql异常处理过程记录

    地区:铁力 故障:2019-06-26 10:19:34 139921514837760 [ERROR] mysqld: Error writing file 'mysql-bin' (errno: ...