题目背景

小a和uim来到雨林中探险。突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声。刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个披头散发、青面獠牙的怪物,低沉着声音说:“呵呵,既然你们来到这,只能活下来一个!”。小a和他的小伙伴都惊呆了!

题目描述

瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了!

现在他想知道他们都能活下来有多少种方法。

输入输出格式

输入格式:

第一行,三个空格隔开的整数n,m,k

接下来n行,m列,表示矩阵每一个的魔液量。同一行的数字用空格隔开。

输出格式:

一个整数,表示方法数。由于可能很大,输出对1 000 000 007取余后的结果。

输入输出样例

输入样例#1:

2 2 3
1 1
1 1
输出样例#1:

4

说明

【题目来源】

lzn改编

【样例解释】

样例解释:四种方案是:(1,1)->(1,2),(1,1)->(2,1),(1,2)->(2,2),(2,1)->(2,2)。

【数据范围】

对于20%的数据,n,m<=10,k<=2

对于50%的数据,n,m<=100,k<=5

对于100%的数据,n,m<=800,1<=k<=15

/*
刚开始设了一个五维状态,f[i][j][k][l][0/1]表示到了i,j的方格,第一个人取了k,第二个人取了l,并且上一个方格是谁走过的方案数,这样的时间空间都会爆。那么我们就吧k和l变成他们的差k-l,此时转移时会出现负数的情况,所以对于第三维k加上p,再模p就好了因为我们只要k=0的情况,所以这样不影响答案。
*/
#include<cstdio>
#include<iostream>
#define M 810
#define N 17
#define MOD 1000000007
using namespace std;
int mp[M][M],f[M][M][N][],n,m,p,ans;
int read()
{
char c=getchar();int num=,flag=;
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
int main()
{
n=read();m=read();p=read();p++;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
mp[i][j]=read();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
f[i][j][mp[i][j]%p][]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
for(int k=;k<p;k++)
{
f[i+][j][(k+mp[i+][j])%p][]+=f[i][j][k][];
f[i][j+][(k+mp[i][j+])%p][]+=f[i][j][k][];
f[i+][j][(k-mp[i+][j]+p)%p][]+=f[i][j][k][];
f[i][j+][(k-mp[i][j+]+p)%p][]+=f[i][j][k][]; f[i+][j][(k+mp[i+][j])%p][]%=MOD;
f[i][j+][(k+mp[i][j+])%p][]%=MOD;
f[i+][j][(k-mp[i+][j]+p)%p][]%=MOD;
f[i][j+][(k-mp[i][j+]+p)%p][]%=MOD;
if(k==)
{
ans+=f[i][j][k][];
ans%=MOD;
}
}
}
}
ans=ans%MOD;
printf("%d",ans);
return ;
}

小a和uim之大逃离(洛谷 1373)的更多相关文章

  1. 洛谷 P1373 小a和uim之大逃离

    2016-05-30 12:31:59 题目链接: P1373 小a和uim之大逃离 题目大意: 一个N*M的带权矩阵,以任意起点开始向右或者向下走,使得奇数步所得权值和与偶数步所得权值和关于K的余数 ...

  2. 洛古 P1373 小a和uim之大逃离

    P1373 小a和uim之大逃离 题目提供者lzn 标签 动态规划 洛谷原创 难度 提高+/省选- 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电 ...

  3. 洛谷1373 小a和uim之大逃离

    洛谷1373 小a和uim之大逃离 本题地址:http://www.luogu.org/problem/show?pid=1373 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北 ...

  4. AC日记——小A和uim之大逃离 II 洛谷七月月赛

    小A和uim之大逃离 II 思路: spfa: 代码: #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f ...

  5. 【洛谷P1373】小a和uim之大逃离

    小a和uim之大逃离 题目链接 因为每次只能向下或向右走,我们可以递推 dp[i][j][d][0/1]表示走到(i,j),mod k 意义下差值为d,轮到小a/小uim操作时的方案数 dp[i][j ...

  6. 【洛谷P3818】小A和uim之大逃离 II

    小A和uim之大逃离 II 题目链接 比较裸的搜索,vis[i][j]再加一层[0/1]表示是否使用过魔液 转移时也将是否使用过魔液记录下来,广搜即可 #include<iostream> ...

  7. P3818 小A和uim之大逃离 II(洛谷月赛)

    P3818 小A和uim之大逃离 II 题目背景 话说上回……还是参见 https://www.luogu.org/problem/show?pid=1373 吧 小a和uim再次来到雨林中探险.突然 ...

  8. 洛谷P1373 小a和uim之大逃离

    P1373 小a和uim之大逃离 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从 ...

  9. 【Luogu1373】小a和uim之大逃离(动态规划)

    [Luogu1373]小a和uim之大逃离(动态规划) 题面 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布 ...

  10. 【题解】 P1373 小a和uim之大逃离

    题解 P1373 小a和uim之大逃离 传送门 一道dp好题 乍看此题,感觉要这样设计: \(dp(x)(y)(mod_{a})(mod_{uim})(0/1)\) , 但是我上午考试就MLE了,赶紧 ...

随机推荐

  1. 清北考前刷题da5下午好

    /* (4,1)*(3,1)*(2,1)的话1变成2然后一直是2 2变成1然后变成3 3变成1然后变成4 4变成1 */ #include<iostream> #include<cs ...

  2. 乐字节Java8核心特性之方法引用

    大家好,我是乐字节的小乐,上一次我们说到了Java8核心特性之函数式接口,接下来我们继续了解Java8又一核心特性--方法引用. Java8 中引入方法引用新特性,用于简化应用对象方法的调用, 方法引 ...

  3. golang——字符串与编码

    1.字符编码 (1)ASCII码 一个字节表示的英文.数字.标点符号等字符. 国际标准ASCII码为0-127即128个字符,二进制最高位为0,其余为扩展ASCII码. (2)GB2312 两字节,主 ...

  4. php insteadof 作用

    PHP5的另一个新成员是instdnceof关键字.使用这个关键字可以确定一个对象是类的实例.类的子类,还是实现了某个特定接口,并进行相应的操作.在某些情况下,我们希望确定某个类是否特定的类型,或者是 ...

  5. CF848A From Y to Y

    思路1: 每次贪心地选择满足i * (i - 1) / 2 <= k最大的i并从k中减去i * (i - 1) / 2,直至k为0.由于函数x * (x - 1) / 2的增长速度比2x要慢,所 ...

  6. Mysql慢SQL与索引案例

    写在最前 关于慢sql的开启与配置查看之前我整理的文章: http://www.cnblogs.com/hanxiaobei/p/5515624.html 前提准备: tomcat7.x mysql- ...

  7. 关于 VS 调用存储过程加载很慢和SQL 执行很快的那些事

    执行同样的存储过程,调用同样的参数 在VS 中调用存储过程和传参后,到数据加载需要20秒或更多, 在SQL直接调用则不到一秒,同一个存储过程为什么有这么大的区别呢? 原因:存储过程计划失效的原因 产生 ...

  8. Navicat Premium 12 破解方法

    基本安装下一步下一步,破解方法参考:地址

  9. 【前端路由】Vue-router 中hash模式和history模式的区别

    咱们今天说说VUE路由的hash模式与history模式的区别,这个也是面试常问的问题,不要小看这道题其实问到这里的时候那个面试官应该是个大牛,开发经验丰富,这个题其实就是考验你的开发经验是否属实. ...

  10. wparam , lparam 传递消息

    01.WM_PAINT消息 LOWORD(lParam)是客户区的宽,HIWORD(lParam)是客户区的高 02.滚动条WM_VSCROLL或WM_HSCROLL消息 LOWORD(wParam) ...