出题:不同大小烙饼的排序问题:对于N块大小不一的烙饼,上下累在一起,由于一只手托着所有的饼,所以仅有一只手可以翻转饼(假设手足够大可以翻转任意块数的 饼),规定所有的大饼都出现在小饼的下面则说明已经排序,则最少需要翻转几次,才能达到大小有序的结果(改变饼的顺序只能整体翻转,不能相邻交换);

分析:

  • 假设饼大小编号为1,……,N,1就是最小的饼,N就是最大的饼,最大的N饼翻转到最下面之前,一定需要达到最上面,所以首先需要寻找N饼所在的位置,翻 转到最上面,然后翻转所有的饼,这样N饼就可以就位;
  • 然后针对N-1饼,直到1饼。翻转的次数最大为2*(N-1)(如果当前需要就位的饼就在最上面,则 只需一次翻转,不然每块饼就位需要翻转两次,最后一块饼不用翻转就已经就位);
  • version1的策略是每次找出0到index内最大的烙饼,翻转后与index+1的烙饼相邻(最大与次大相邻);但是可能有其他的“让某两块饼相邻”的策略使得翻转次数小于2*(N-1),所以可以穷举翻转策略,然后选择最优的一个解(翻转次数最少);

解题:

 /**
* 注意此处的length为target的元素个数
* */
void reverse(int* target, int length) {
int temp;
int i;
for(i=;i<length/;i++) {
temp=*(target+i);
*(target+i)=*(target+(length-i-));
*(target+(length-i-))=temp;
}
} void version1(int *array, int length) {
int index=length-, curmax;
/**
* 最后一块饼在倒数第二块饼就位时就已经就位,
* 所以循环次数为N-1,0表示最上层,index表示
* 最下层
* */
while(index>) {
/**
* 寻找0到index内最大值
* */
curmax=;
for(int i=;i<=index;i++) {
if(array[curmax]<array[i])
curmax=i;
}
/**
* 将最大值翻转到索引0处
* */
reverse(array, curmax+);
/**
* 将最大值翻转到index处
* */
reverse(array, index+); for(int i=;i<;i++)
printf("%d, ",array[i]);
printf("\n");
index--;
}
} int main() { int array[]={,,,,,};
version1(array,);
return ;
}

出题:关于阶乘的几个问题:给定一个整数N,则N!的末尾有多少个0,N!的二进制表示中最低位的1所在的位置;

分析:

  • 对于N!十进制表示末尾的0的个数,其来自于5与偶数的乘积,由于偶数相对较多,所以主要取决于各个数字分解之后为包含5的个数。N!=N*(N-1)*(N-2)*……*2*1,则针对每一个乘数K,将其分解为(5^i)*M的形式计算第二个来源贡献的0的个数;
  • 对于N!二进制表示的最低位的1的位置,也就是确定最低的2^i的位置,也就是求N!分解为2的质因子的个数;

解题:

 int count_0_in_factorial(int n) {
int count=;
int c5,n5;
/**
* 外循环遍历n,n-1,n-2,……1
* */
while(n>) {
/**
* 计算数字如5,10,15等能够被5整除的数字中
* 包含5的个数
* */
c5=;n5=n;
while(n5%==) {
c5++;
n5/=;
}
count+=c5;
n--;
} return count;
} int count_low_1_factorial(int n) {
int index=;
while(n!=) {
n>>=;
index+=n;
}
return index;
} int main() {
int c=;
printf("%d\n",count_0_in_factorial(c));
return ;
}

笔试算法题(33):烙饼排序问题 & N!阶乘十进制末尾0的个数二进制最低1的位置的更多相关文章

  1. POJ 1401:Factorial 求一个数阶乘的末尾0的个数

    Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Descri ...

  2. 计算阶乘n!末尾0的个数

    一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...

  3. N的阶乘末尾0的个数和其二进制表示中最后位1的位置

    问题一解法:     我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...

  4. Algorithm --> 求阶乘末尾0的个数

    求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...

  5. 求N的阶乘N!中末尾0的个数

    求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...

  6. Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes

    题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in ...

  7. 计算n的阶乘(n!)末尾0的个数

    题目: 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数. 举例: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= 24 ...

  8. 前端如何应对笔试算法题?(用node编程)

    用nodeJs写算法题 咱们前端使用算法的地方不多,但是为了校招笔试,不得不针对算法题去练习呀! 好不容易下定决心 攻克算法题.发现js并不能像c语言一样自建输入输出流.只能回去学习c语言了吗?其实不 ...

  9. 面试必备:高频算法题终章「图文解析 + 范例代码」之 矩阵 二进制 + 位运算 + LRU 合集

    Attention 秋招接近尾声,我总结了 牛客.WanAndroid 上,有关笔试面经的帖子中出现的算法题,结合往年考题写了这一系列文章,所有文章均与 LeetCode 进行核对.测试.欢迎食用 本 ...

随机推荐

  1. Android系统中setprop,getprop,watchprops命令的使用(转载)

    转自:http://blog.csdn.net/yao_guet/article/details/6531241 在android系统中,有一些初始化的配置文件,例如: /init.rc /defau ...

  2. 洛谷P4206 [NOI2005]聪聪与可可(期望dp+最短路)

    传送门 首先,猫的走位太飘了……只能预处理…… 先对每一个点跑一遍dijkstra跑出最短路,然后再预处理出$nxt[i][j]$表示当猫在$i$老鼠在$j$时猫下一步会走到哪里 然后考虑dp,设$d ...

  3. java String类为什么是final的

    1.为了安全 java 必须借助操作系统本身的力量才能做事,jdk提供的很多核心类比如String,这类内的很多方法 都不是java编程语言本身编写的,很多方法都是调用操作系统本地的api,如果被继承 ...

  4. poj 1061 青蛙约会(扩展欧几里德)

    题目链接: http://poj.org/problem?id=1061 题目大意: 中文题目,题意一目了然,就是数据范围大的出奇. 解题思路: 假设两只青蛙都跳了T次,可以列出来不定方程:p*l + ...

  5. 贪心 Codeforces Round #236 (Div. 2) A. Nuts

    题目传送门 /* 贪心:每一次选取最多的线段,最大能放置nuts,直到放完为止,很贪婪! 题目读不懂多读几遍:) */ #include <cstdio> #include <alg ...

  6. 转 【TTS】AIX平台数据库迁移到Linux--基于RMAN(真实环境)

    [TTS]AIX平台数据库迁移到Linux--基于RMAN(真实环境) http://www.cnblogs.com/lhrbest/articles/5186933.html 各位技术爱好者,看完本 ...

  7. jsp错误处理

    jsp提供了很好的错误能力,除了在java代码中可以使用try语句,还可以指定一个特殊页面,当页面应用遇到未捕获的异常时,用户将看到一个精心设计的网页解释发生了什么,而不是一个用户无法理解的错误信息. ...

  8. D. Leaving Auction 一题很好的思维题

    http://codeforces.com/contest/749/problem/D 现在发现做题要把样例抄下来,然后画一画,这样才容易发现新大陆.嗯,以后做题就这样. 如果排除了被删除了的人,那么 ...

  9. Java开发笔记(九十三)深入理解字节缓存

    前面介绍了文件通道的读写操作,其中用到字节缓存ByteBuffer,它是位于通道内部的存储空间,也是通道唯一可用的存储形式.ByteBuffer有两种构建方式,一种是调用静态方法wrap,根据输入的字 ...

  10. Android开发中查看未root真机的app数据库

    在Android开发中,如果用到数据库来储存数据,那么难免就要查看数据库中的内容,可是对于未root的真机来说,查看数据库就不是那么容易了,如果仅仅为了查看数据库再把手机root了,有点得不偿失,所以 ...