A Simple Problem with Integers
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 60441   Accepted: 18421
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is
to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.

The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.

Each of the next Q lines represents an operation.

"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.

"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

将一段的值添加c 求一段的和

将线段树的每一段表示它代表的那一段的和。统计结果时,要记录一段的全部的父节点的和。对该段会有影响

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 100000
#define LL __int64
#define lmin 1
#define rmax n
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define root lmin,rmax,1
#define now l,r,rt
#define int_now LL l,LL r,LL rt
LL cl[maxn<<2] , lazy[maxn<<2];
void push_up(int_now)
{
cl[rt] = cl[rt<<1] + cl[rt<<1|1] + (r-l+1)*lazy[rt] ;
}
void push_down(int_now)
{ }
void creat(int_now)
{
cl[rt] = lazy[rt] = 0 ;
if(l != r)
{
creat(lson);
creat(rson);
push_up(now);
}
else
scanf("%I64d", &cl[rt]);
}
void update(LL ll,LL rr,LL x,int_now)
{
if( ll > r || rr < l )
return ;
if( ll <= l && r <= rr )
{
lazy[rt] += x ;
cl[rt] += (r-l+1)*x ;
return ;
}
update(ll,rr,x,lson);
update(ll,rr,x,rson);
push_up(now);
}
LL query(LL ll,LL rr,int_now,LL add)
{
if( ll > r || rr < l )
return 0;
if( ll <= l && r <= rr )
return cl[rt] + ( r-l+1 )*add ;
push_down(now);
return query(ll,rr,lson,add+lazy[rt]) + query(ll,rr,rson,add+lazy[rt]) ;
}
int main()
{
LL i , j , x , n , m ;
char str[10] ;
while(scanf("%I64d %I64d", &n, &m) !=EOF)
{
creat(root);
while(m--)
{
scanf("%s", str);
if(str[0] == 'C')
{
scanf("%I64d %I64d %I64d", &i, &j, &x);
update(i,j,x,root);
}
else
{
scanf("%I64d %I64d", &i, &j);
printf("%I64d\n", query(i,j,root,0));
}
}
}
return 0;
}

poj3511--A Simple Problem with Integers(线段树求和)的更多相关文章

  1. 2018 ACMICPC上海大都会赛重现赛 H - A Simple Problem with Integers (线段树,循环节)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 H - A Simple Problem with Integers (线段树,循环节) 链接:https://ac.nowcoder.co ...

  2. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  3. poj3468 A Simple Problem with Integers (线段树区间最大值)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92127   ...

  4. POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)

    A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...

  5. poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解

    A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...

  6. Poj 3468-A Simple Problem with Integers 线段树,树状数组

    题目:http://poj.org/problem?id=3468   A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

  7. [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]

    A Simple Problem with Integers   Description You have N integers, A1, A2, ... , AN. You need to deal ...

  8. 【POJ】3468 A Simple Problem with Integers ——线段树 成段更新 懒惰标记

    A Simple Problem with Integers Time Limit:5000MS   Memory Limit:131072K Case Time Limit:2000MS Descr ...

  9. A Simple Problem with Integers(线段树,区间更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 83822   ...

  10. POJ A Simple Problem with Integers 线段树 lazy-target 区间跟新

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 105742 ...

随机推荐

  1. GA详解

    转:http://blog.csdn.net/u010451580/article/details/51178225 本文是去年课题组周报中的一个专题讲解,详细讲了GA,由于是周报,所以十分详细.很适 ...

  2. Java Socket 连接 Client端 和 Server端

    Client端: import java.io.DataInputStream;import java.io.DataOutputStream;import java.io.IOException;i ...

  3. Locations for Public Frameworks

    Locations for Public Frameworks Third-party frameworks can go in a number of different file-system l ...

  4. Windows下Eclipse+PyDev安装Python开发环境

    .简介 Eclipse是一款基于Java的可扩展开发平台.其官方下载中包括J2EE方向版本.Java方向版本.C/C++方向版本.移动应用方向版本等诸多版本.除此之外,Eclipse还可以通过安装插件 ...

  5. Nginx(alias 和 root的区别)

    Nginx(alias 和 root的区别)1.alias 和 root 的区别: location /request_path/image { root /local_path/image/; } ...

  6. JS 实现全屏预览 F11功能

    老是不通过,没办法,只能是重新发布了,反正我就是杠上了,大大小小写过很多前端特效,当然也经常在网上copy或者修改人家的代码,我觉得也挺好的,为什么?!因为我想这样,你能怎么办,打我?少废话,直接上代 ...

  7. Anaconda基本用法

    Anaconda基本用法 conda info --envs/(-e) // 查看当前的环境变量 conda create -n py36(环境的名称,随意) python=3.6(指定版本) //  ...

  8. jQuery调用WCF 说明

    在项目中用过一些WCF的技术这篇文章是对以前用过的一点东西的一个梳理 一,webconfig的配置除了一般的配置外,与WCF相关的配置如下 <system.serviceModel>    ...

  9. Python爬虫 爬取Web页面图片

    从网页页面上批量下载jpg格式图片,并按照数字递增命名保存到指定的文件夹 Web地址:http://news.weather.com.cn/2017/12/2812347.shtml 打开网页,点击F ...

  10. 九度oj 题目1438:最小公倍数

    题目1438:最小公倍数 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2451 解决:2057 题目描述: 给定两个正整数,计算这两个数的最小公倍数. 输入: 输入包含多组测试数据,每 ...