Happy 2006

这个题很可能会超时的,但我几乎暴力的方法2700ms+过了,可能是后台水吧。开始没有什么思路,如果k小的话或许直接暴力可以,但k会比m都大,于是超过m的就不造怎么求了。。。看了讨论区某位大神的留言突然发现如果gcd(a,m)=1,那么gcd(a+km,m)=1也成立,这个用广义欧几里德即辗转相除法原理就可以明白了。

题意:就一句话,给定两个正整数m,k;求m的第k个互质数。

思路:我们可以发现小于m并且与m互质的数就构成了一个模m的简化剩余系,个数就是euler(m),那么这些数每个都加上m又会构成另一个简化剩余系。于是求第k个只需知道m的最小简化剩余系然后再加上m的倍数即可。

首先要把与m互质的数筛出来,那么就是1e6log(1e6),开始是想把素数先打个表看看能否优化些时间,后来把这部分去了,直接求一个数的简化剩余系也过了2922MS,好有趣。优化了一下又交了几发2782MS。注意1
1这组数据, 开始还re了两发。

const int N=1e6+10;
ll m,k,a[N];
void init(ll *a,int &len)//把小于m并且与m互质的数筛出来;
{
for(ll i=1; i<=m; i++)
int len=0;
if(__gcd(i,m)==1) a[++len]=i;
}
ll find()
{
if(x==0) return a[len]+(k-1)*m;
init(a,len);//len是个数;
ll x=k%len;
k/=len;
return a[x]+k*m;
}
int main()
{
while(~scanf("%I64d%I64d",&m,&k))//注意1 1这组数据
{
printf("%I64d\n",find());
}
return 0;
}

这里提到的简化剩余系在信安数学基础里的含义是:简化剩余系

POJ-2773 Happy 2006,暴力2700ms+水过!的更多相关文章

  1. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

  2. POJ 2773 Happy 2006 数学题

    题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...

  3. POJ 2773 Happy 2006#素数筛选+容斥原理+二分

    http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...

  4. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...

  5. POJ 2773 Happy 2006(容斥原理+二分)

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10827   Accepted: 3764 Descr ...

  6. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  7. poj 2773 Happy 2006

    // 题意 :给你两个数 m(10^6),k(10^8) 求第k个和m互质的数是什么这题主要需要知道这样的结论gcd(x,n)=1 <==> gcd(x+n,n)=1证明 假设 gcd(x ...

  8. poj 2773 Happy 2006 容斥原理+二分

    题目链接 容斥原理求第k个与n互质的数. #include <iostream> #include <vector> #include <cstdio> #incl ...

  9. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

随机推荐

  1. python tkinter窗口弹出置顶的方法

    加上下面两句即可实现root窗口的置顶显示,可以用于某些程序的消息提示,能够弹出到桌面显示 root = Tk() root.wm_attributes('-topmost',1)

  2. Web service简介 与servletContext的参数

    Web service顾名思义是基于web的服务,它是一种跨平台,跨语言的服务. 我们可以这样理解它,比如说我们可以调用互联网上查询天气信息的web服务,把它嵌入到我们的B/S程序中,当用户从我们的网 ...

  3. C#的WinForm中Label透明一例

    很久之前開發的一個MIS系統,里面有個登錄界面,採用了PictureBox做背景,上面放了一些Label,試了很多方面不能實現透明,如下圖: 這次重新啟用該系統,看了一下原因,很簡單,原來Label的 ...

  4. sql查询作业执行时间

    SELECT  j.name                        AS Job_Name        ,        h.step_id                     AS S ...

  5. HDU 5391 Zball in Tina Town (打表,水)

    题意: Tina有一个球,它的名字叫zball.zball很神奇,它会每天变大.在第一天的时候,它会变大1倍.在第二天的时候,它会变大2倍.在第n天的时候,它会变大n倍.zball原来的体积是1.Ti ...

  6. js 逻辑运算符、等号运算符

    1 逻辑运算符 逻辑运算只有2个结果,一个为true,一个为false. 1.且&& ★ 两个表达式为true的时候,结果为true. ------------------------ ...

  7. docker存储管理

    Docker 镜像的元数据 repository元数据 repository在本地的持久化文件存放于/var/lib/docker/image/overlay2/repositories.json中 ...

  8. Java练习demo 20190402 优惠券扣减

    实体类: package org.jimmy.autosearch2019.pojo; import java.math.BigDecimal; public class TestEntity2019 ...

  9. Encryption requires the OpenSSL PHP extension 报错

    报错截图: 解决办法: 修改php.ini配置文件,打开该拓展 open php.ini search “opensll” remove the semicolon from: extension=p ...

  10. Word转html并移植到web项目

    1.打开对应word文件 建议使用web视图查看文档 这样可以提前预览转转成html样式 2.如果有图片修改图片大小及格式 在web视图下,把图片调制适当大小,不然导出的html可能图片较小 3.点击 ...