tensorflow基础练习:线性模型
- TensorFlow是一个面向数值计算的通用平台,可以方便地训练线性模型。下面采用TensorFlow完成Andrew Ng主讲的Deep Learning课程练习题,提供了整套源码。
线性回归
多元线性回归
逻辑回归
线性回归
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 6 19:46:04 2017
@author: Administrator
"""
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# @author: ranjiewen
# @date: 2017-9-6
# @description: compare scikit-learn and tensorflow, using linear regression data from deep learning course by Andrew Ng.
# @ref: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex2/ex2.html
import tensorflow as tf
import numpy as np
from sklearn import linear_model
# Read x and y
#x_data = np.loadtxt("ex2x.dat")
#y_data = np.loadtxt("ex2y.dat")
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3+np.random.rand(100)
# We use scikit-learn first to get a sense of the coefficients
reg = linear_model.LinearRegression()
reg.fit(x_data.reshape(-1, 1), y_data)
print ("Coefficient of scikit-learn linear regression: k=%f, b=%f" % (reg.coef_, reg.intercept_))
# Then we apply tensorflow to achieve the similar results
# The structure of tensorflow code can be divided into two parts:
# First part: set up computation graph
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
loss = tf.reduce_mean(tf.square(y - y_data)) / 2
# 对于tensorflow,梯度下降的步长alpha参数需要很仔细的设置,步子太大容易扯到蛋导致无法收敛;步子太小容易等得蛋疼。迭代次数也需要细致的尝试。
optimizer = tf.train.GradientDescentOptimizer(0.07) # Try 0.1 and you will see unconvergency
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
# Second part: launch the graph
sess = tf.Session()
sess.run(init)
for step in range(1500):
sess.run(train)
if step % 100 == 0:
print (step, sess.run(W), sess.run(b))
print ("Coeeficient of tensorflow linear regression: k=%f, b=%f" % (sess.run(W), sess.run(b)))
- 思考:对于tensorflow,梯度下降的步长alpha参数需要很仔细的设置,步子太大容易扯到蛋导致无法收敛;步子太小容易等得蛋疼。迭代次数也需要细致的尝试。
多元线性回归
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 6 19:53:24 2017
@author: Administrator
"""
import numpy as np
import tensorflow as tf
from numpy import mat
from sklearn import linear_model
from sklearn import preprocessing
# Read x and y
#x_data = np.loadtxt("ex3x.dat").astype(np.float32)
#y_data = np.loadtxt("ex3y.dat").astype(np.float32)
x_data = [np.random.rand(100).astype(np.float32),np.random.rand(100).astype(np.float32)+10]
x_data=mat(x_data).T
y_data = 5.3+np.random.rand(100)
# We evaluate the x and y by sklearn to get a sense of the coefficients.
reg = linear_model.LinearRegression()
reg.fit(x_data, y_data)
print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_))
# Now we use tensorflow to get similar results.
# Before we put the x_data into tensorflow, we need to standardize it
# in order to achieve better performance in gradient descent;
# If not standardized, the convergency speed could not be tolearated.
# Reason: If a feature has a variance that is orders of magnitude larger than others,
# it might dominate the objective function
# and make the estimator unable to learn from other features correctly as expected.
# 对于梯度下降算法,变量是否标准化很重要。在这个例子中,变量一个是面积,一个是房间数,量级相差很大,如果不归一化,面积在目标函数和梯度中就会占据主导地位,导致收敛极慢。
scaler = preprocessing.StandardScaler().fit(x_data)
print (scaler.mean_, scaler.scale_)
x_data_standard = scaler.transform(x_data)
W = tf.Variable(tf.zeros([2, 1]))
b = tf.Variable(tf.zeros([1, 1]))
y = tf.matmul(x_data_standard, W) + b
loss = tf.reduce_mean(tf.square(y - y_data.reshape(-1, 1)))/2
optimizer = tf.train.GradientDescentOptimizer(0.3)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in range(100):
sess.run(train)
if step % 10 == 0:
print (step, sess.run(W).flatten(), sess.run(b).flatten())
print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()))
print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))))
- 思路:对于梯度下降算法,变量是否标准化很重要。在这个例子中,变量一个是面积,一个是房间数,量级相差很大,如果不归一化,面积在目标函数和梯度中就会占据主导地位,导致收敛极慢。
逻辑回归
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 6 20:13:15 2017
数据下载:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html
@author: Administrator
"""
import tensorflow as tf
import numpy as np
from numpy import mat
from sklearn.linear_model import LogisticRegression
from sklearn import preprocessing
# Read x and y
x_data = np.loadtxt("ex4Data/ex4x.dat").astype(np.float32)
y_data = np.loadtxt("ex4Data/ex4y.dat").astype(np.float32)
#x_data = [np.random.rand(100).astype(np.float32),np.random.rand(100).astype(np.float32)+10]
#x_data=mat(x_data).T
#y_data = 5.3+np.random.rand(100)
scaler = preprocessing.StandardScaler().fit(x_data)
x_data_standard = scaler.transform(x_data)
# We evaluate the x and y by sklearn to get a sense of the coefficients.
reg = LogisticRegression(C=999999999, solver="newton-cg") # Set C as a large positive number to minimize the regularization effect
reg.fit(x_data, y_data)
print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_))
# Now we use tensorflow to get similar results.
W = tf.Variable(tf.zeros([2, 1]))
b = tf.Variable(tf.zeros([1, 1]))
y = 1 / (1 + tf.exp(-tf.matmul(x_data_standard, W) + b))
loss = tf.reduce_mean(- y_data.reshape(-1, 1) * tf.log(y) - (1 - y_data.reshape(-1, 1)) * tf.log(1 - y))
optimizer = tf.train.GradientDescentOptimizer(1.3)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in range(100):
sess.run(train)
if step % 10 == 0:
print (step, sess.run(W).flatten(), sess.run(b).flatten())
print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()))
print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))))
# Problem solved and we are happy. But...
# I'd like to implement the logistic regression from a multi-class viewpoint instead of binary.
# In machine learning domain, it is called softmax regression
# In economic and statistics domain, it is called multinomial logit (MNL) model, proposed by Daniel McFadden, who shared the 2000 Nobel Memorial Prize in Economic Sciences.
print ("------------------------------------------------")
print ("We solve this binary classification problem again from the viewpoint of multinomial classification")
print ("------------------------------------------------")
# As a tradition, sklearn first
reg = LogisticRegression(C=9999999999, solver="newton-cg", multi_class="multinomial")
reg.fit(x_data, y_data)
print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_))
print ("A little bit difference at first glance. What about multiply them with 2?")
# Then try tensorflow
W = tf.Variable(tf.zeros([2, 2])) # first 2 is feature number, second 2 is class number
b = tf.Variable(tf.zeros([1, 2]))
V = tf.matmul(x_data_standard, W) + b
y = tf.nn.softmax(V) # tensorflow provide a utility function to calculate the probability of observer n choose alternative i, you can replace it with `y = tf.exp(V) / tf.reduce_sum(tf.exp(V), keep_dims=True, reduction_indices=[1])`
# Encode the y label in one-hot manner
lb = preprocessing.LabelBinarizer()
lb.fit(y_data)
y_data_trans = lb.transform(y_data)
y_data_trans = np.concatenate((1 - y_data_trans, y_data_trans), axis=1) # Only necessary for binary class
loss = tf.reduce_mean(-tf.reduce_sum(y_data_trans * tf.log(y), reduction_indices=[1]))
optimizer = tf.train.GradientDescentOptimizer(1.3)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in range(100):
sess.run(train)
if step % 10 == 0:
print (step, sess.run(W).flatten(), sess.run(b).flatten())
print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()))
print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % ((sess.run(W) / scaler.scale_).flatten(), sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))))
- 思考:
- 对于逻辑回归,损失函数比线性回归模型复杂了一些。首先需要通过sigmoid函数,将线性回归的结果转化为0至1之间的概率值。然后写出每个样本的发生概率(似然),那么所有样本的发生概率就是每个样本发生概率的乘积。为了求导方便,我们对所有样本的发生概率取对数,保持其单调性的同时,可以将连乘变为求和(加法的求导公式比乘法的求导公式简单很多)。对数极大似然估计方法的目标函数是最大化所有样本的发生概率;机器学习习惯将目标函数称为损失,所以将损失定义为对数似然的相反数,以转化为极小值问题。
- 我们提到逻辑回归时,一般指的是二分类问题;然而这套思想是可以很轻松就拓展为多分类问题的,在机器学习领域一般称为softmax回归模型。本文的作者是统计学与计量经济学背景,因此一般将其称为MNL模型。
Reference:
tensorflow基础练习:线性模型的更多相关文章
- TensorFlow基础
TensorFlow基础 SkySeraph 2017 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Over ...
- TensorFlow基础笔记(0) 参考资源学习文档
1 官方文档 https://www.tensorflow.org/api_docs/ 2 极客学院中文文档 http://www.tensorfly.cn/tfdoc/api_docs/python ...
- TensorFlow基础笔记(3) cifar10 分类学习
TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognit ...
- TensorFlow基础剖析
TensorFlow基础剖析 一.概述 TensorFlow 是一个使用数据流图 (Dataflow Graph) 表达数值计算的开源软件库.它使 用节点表示抽象的数学计算,并使用 OP 表达计算的逻 ...
- 芝麻HTTP:TensorFlow基础入门
本篇内容基于 Python3 TensorFlow 1.4 版本. 本节内容 本节通过最简单的示例 -- 平面拟合来说明 TensorFlow 的基本用法. 构造数据 TensorFlow 的引入方式 ...
- 05基于python玩转人工智能最火框架之TensorFlow基础知识
从helloworld开始 mkdir mooc # 新建一个mooc文件夹 cd mooc mkdir 1.helloworld # 新建一个helloworld文件夹 cd 1.helloworl ...
- tensorflow基础篇-1
1.使用占位符和变量 import tensorflow as tf import numpy as np #-----创建变量并初始化----------- def first(): my_var= ...
- 5、Tensorflow基础(三)神经元函数及优化方法
1.激活函数 激活函数(activation function)运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经网络.神经网络之所以能解决非线性问题(如语音.图像识别),本质上就是激 ...
- TensorFlow应用实战 | TensorFlow基础知识
挺长的~超出估计值了~预计阅读时间20分钟. 从helloworld开始 mkdir 1.helloworld cd 1.helloworldvim helloworld.py 代码: # -*- c ...
随机推荐
- (28)zabbix用户宏变量详解macro
zabbix宏变量让zabbix变得更灵活,变量可以定义在主机.模板以及全局,变量名称类似:{$MACRO},宏变量都是大写的.认识了宏变量,你会感叹zabbix越发的强大. 变量可以用于如下地方: ...
- (3)zabbix用户管理
登陆zabbix 默认账号:Admin,密码:zabbix,这是一个超级管理员.登陆之后在右下角可以看到“connected as Admin“(中文版:连接为Admin). zabbix组介绍 我们 ...
- perl:_DATA_ _LINE_ _FILE_
这三个应该是句柄: _DATA_ _FILE_ _LINE_ 没有找到具体介绍...记录于此,已被后续补充.
- perl学习一:探索Perl世界
1.perl4种变量 scalar: $ 纯变量,标量array: @hash: %file: 大写 2.变量组成 1.命名规则 大小写敏感 . 字母数字下划线...2.无关键字,$+其他,但不可以与 ...
- IE8 png图片黑色阴影的解决方案!
以前都没有留意这个问题,最近开发中才发现. 什么情况下会出现黑边? PNG透明图片,同时有阴影,具备着两个IE8是不会有问题的,再加上使用了 “渐变显示”,就会出现了. 解决方法: img{displ ...
- Linux下配置MySQL主从复制
一.环境准备 本次准备两台Linux主机,操作系统都为CentOS6.8, 都安装了相同版本的MySQL.(MySQL5.7). 主从服务器的防火墙都开启了3306端口. 相关信息如下: [主服务器] ...
- shell 几中专用修饰符 :- :+ := ${variable:offset:length}
1.${variable:-word} ${variable:-word} 如果variable已经被设置了,且不为空,则代入它的值,否则代入word; $ fruit=peach $ echo ${ ...
- 北京师范大学第十五届ACM决赛-重现赛
Another Server 时间限制:1秒 空间限制:262144K 题目描述 何老师某天在机房里搞事情的时候,发现机房里有n台服务器,从1到n标号,同时有2n-2条网线,从1到2n-2标号,其中第 ...
- 2011 Michigan Invitational Programming Contest
Crossings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100463 Description ...
- 雅礼培训 Problem B 【图论 + 贪心】
题意 A和B在树上轮流选点,记A的联通块个数为\(x\),B的联通块个数为\(y\) A使\(x - y\)最大,B使\(x - y\) 二人采取最优策略,求\(x-y\) 题解 树联通块个数 = 点 ...