逻辑回归(Logistic Regression)推导
出自BYRans博客:http://www.cnblogs.com/BYRans/
本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题。
二分类问题
二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我们要做一个垃圾邮件过滤系统,
是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件。对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子中,正类就是正常邮件,负类就是垃圾邮件。
逻辑回归
Logistic函数
如果我们忽略二分类问题中y的取值是一个离散的取值(0或1),我们继续使用线性回归来预测y的取值。这样做会导致y的取值并不为0或1。逻辑回归使用一个函数来归一化y值,使y的取值在区间(0,1)内,这个函数称为Logistic函数(logistic function),也称为Sigmoid函数(sigmoid function)。函数公式如下:

Logistic函数当z趋近于无穷大时,g(z)趋近于1;当z趋近于无穷小时,g(z)趋近于0。Logistic函数的图形如下:

Logistic函数求导时有一个特性,这个特性将在下面的推导中用到,这个特性为:

逻辑回归表达式
逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0到1之间。线性回归模型的表达式带入g(z),就得到逻辑回归的表达式:

依照惯例,让
,表达式就转换为:

逻辑回归的软分类
现在我们将y的取值通过Logistic函数归一化到(0,1)间,y的取值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

对上面的表达式合并一下就是:

梯度上升
得到了逻辑回归的表达式,下一步跟线性回归类似,构建似然函数,然后最大似然估计,最终推导出θ的迭代更新表达式。这个思路不清楚的请参考文章《线性回归、梯度下降》,只不过这里用的不是梯度下降,而是梯度上升,因为这里是最大化似然函数不是最小化似然函数。
我们假设训练样本相互独立,那么似然函数表达式为:

同样对似然函数取log,转换为:

转换后的似然函数对θ求偏导,在这里我们以只有一个训练样本的情况为例:

这个求偏导过程第一步是对θ偏导的转化,依据偏导公式:y=lnx y'=1/x。
第二步是根据g(z)求导的特性g'(z) = g(z)(1 - g(z)) 。
第三步就是普通的变换。
这样我们就得到了梯度上升每次迭代的更新方向,那么θ的迭代表达式为:

这个表达式与LMS算法的表达式相比,看上去完全相同,但是梯度上升与LMS是两个不同的算法,因为表示的是关于
的一个非线性函数。
两个不同的算法,用同一个表达式表达,这并不仅仅是巧合,两者存在深层的联系。这个问题,我们将在广义线性模型GLM中解答。
逻辑回归(Logistic Regression)推导的更多相关文章
- Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...
- ML 逻辑回归 Logistic Regression
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- 机器学习(四)--------逻辑回归(Logistic Regression)
逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的 线性方程拟合的是连 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...
- 机器学习 (三) 逻辑回归 Logistic Regression
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 逻辑回归(Logistic Regression)详解,公式推导及代码实现
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...
- 逻辑回归 Logistic Regression
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...
- 逻辑回归 logistic regression(1)逻辑回归的求解和概率解释
本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑 ...
随机推荐
- 上下文( Contexts )
在 Indy9 的服务器中,链接特定(connection specific)的数据被作为线程类的一部分被存储. 实现这个要不然通过使用 thread.data 属性要不然通过继承对应的 thread ...
- GNS3配置SecureCRT
C:\SecureCRT\SecureCRT.exe /script D:\GNS3\DyRouter.vbs /T /telnet 127.0.0.1 %p "D:\Program Fil ...
- A星算法(Java实现)
一.适用场景 在一张地图中.绘制从起点移动到终点的最优路径,地图中会有障碍物.必须绕开障碍物. 二.算法思路 1. 回溯法得到路径 (假设有路径)採用"结点与结点的父节点"的关系从 ...
- ASP.NET MVC Model之二模型绑定
Asp.net mvc中的模型绑定,或许大家经常用,但是具体说他是怎么一回事,可能还是会有些陌生,那么,本文就带你理解模型绑定.为了理解模型绑定,本文会先给出其定义,然后对通过比,来得出使用模型绑定的 ...
- JavaScript基础 -- 常见DOM树操作
1.创建并增加元素节点 <ul id="ul"> <li>1</li> <li>2</li> <li>3&l ...
- 【NOIP1999】【Codevs 1046】旅行家的预算
http://codevs.cn/problem/1046/ Solution: 贪心,如果当前油价很低,它就比起当前剩余油的价还低就可以替换,并且每次加满,最后把剩的油卖掉即可 油价用单调链表(不知 ...
- luogu 3371 【模板】单源最短路径
我太菜了 今天才学会堆优化的dij #include<iostream> #include<cstdio> #include<algorithm> #include ...
- BZOJ_2424_[HAOI2010]订货_最小费用最大流
BZOJ_2424_[HAOI2010]订货_最小费用最大流 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付 ...
- 深入理解JMM(Java内存模型) --(六)final
与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象 ...
- sql复杂查询语句总结
转自:http://blog.csdn.net/fengfeng91/article/details/15029173 create table student( sno varchar2(10) p ...