遍历概念



     所谓遍历(Traversal)是指沿着某条搜索路线。依次对树中每一个结点均做一次且仅做一次訪问。訪问结点所做的操作依赖于详细的应用问题。

 遍历是二叉树上最重要的运算之中的一个,是二叉树上进行其他运算之基础。



遍历方案



1.遍历方案

     从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此。在任一给定结点上,能够按某种次序运行三个操作:

     (1)訪问结点本身(N),

     (2)遍历该结点的左子树(L),

     (3)遍历该结点的右子树(R)。

以上三种操作有六种运行次序:

     NLR、LNR、LRN、NRL、RNL、RLN。

注意:

     前三种次序与后三种次序对称。故仅仅讨论先左后右的前三种次序。

2.三种遍历的命名

     依据訪问结点操作发生位置命名:

  ① NLR:前序遍历(PreorderTraversal亦称(先序遍历))

         ——訪问结点的操作发生在遍历其左右子树之前。

  ② LNR:中序遍历(InorderTraversal)

        ——訪问结点的操作发生在遍历其左右子树之中(间)。

  ③ LRN:后序遍历(PostorderTraversal)

        ——訪问结点的操作发生在遍历其左右子树之后。

  注意:

     因为被訪问的结点必是某子树的根。所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。

NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。





遍历算法



1.中序遍历的递归算法定义:

     若二叉树非空。则依次运行例如以下操作:

         (1)遍历左子树。

         (2)訪问根结点;

         (3)遍历右子树。



2.先序遍历的递归算法定义:

    若二叉树非空,则依次运行例如以下操作:

         (1) 訪问根结点;

         (2) 遍历左子树;

         (3) 遍历右子树。

3.后序遍历得递归算法定义:

    若二叉树非空。则依次运行例如以下操作:

         (1)遍历左子树。

         (2)遍历右子树。

         (3)訪问根结点。



4.中序遍历的算法实现

     用二叉链表做为存储结构,中序遍历算法可描写叙述为:

      void InOrder(BinTree T)

        { //算法里①~⑥是为了说明运行过程增加的标号

          ① if(T) { // 假设二叉树非空

          ②    InOrder(T->lchild);

          ③    printf("%c",T->data)。 // 訪问结点

          ④    InOrder(T->rchild);

          ⑤  }

          ⑥ } // InOrder

数据结构-二叉树的遍历(类C语言描写叙述)的更多相关文章

  1. 数据结构—单链表(类C语言描写叙述)

    单链表 1.链接存储方法 链接方式存储的线性表简称为链表(Linked List). 链表的详细存储表示为: ① 用一组随意的存储单元来存放线性表的结点(这组存储单元既能够是连续的.也能够是不连续的) ...

  2. 设计模式-适配器模式(Go语言描写叙述)

    在上一篇博客设计模式-策略模式(Go语言描写叙述)中我们用最简单的代码用go语言描写叙述了设计模式中的策略模式,用最简单的实例来描写叙述相信能够让刚開始学习的人能够非常轻松的掌握各种设计模式.继上篇博 ...

  3. 数据结构-二叉树的遍历实现笔记C++

    二叉树的遍历实现,可以用递归的方法也可以用非递归的方法.非递归的方法可以借助栈(前序遍历,中序遍历,后序遍历),也可以借助队列(层次遍历).本次笔记只使用了递归的方法来进行前序遍历,中序遍历,后序遍历 ...

  4. Java数据结构——二叉树的遍历(汇总)

    二叉树的遍历分为深度优先遍历(DFS)和广度优先遍历(BFS) DFS遍历主要有: 前序遍历 中序遍历 后序遍历 一.递归实现DFSNode.java: public class Node { pri ...

  5. 数据结构 - 二叉树的遍历(递归VS非递归)

    import java.util.LinkedList; public class BinaryTree { public static void main(String[] args) { int ...

  6. 设计模式-策略模式(Go语言描写叙述)

    好久没有更新博客了.近期也是在忙着充电,今天这篇博客開始,我们来了解一下设计模式. 设计模式 那什么是设计模式呢?首先来看看我从百科上copy下来的概念吧. 设计模式/软件设计模式(Design pa ...

  7. 【算法拾遗(java描写叙述)】--- 选择排序(直接选择排序、堆排序)

    选择排序的基本思想 每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,知道所有记录排序完毕.主要有两种选择排序方法:直接选择排序(或称简单选择排序)和堆排序. 直接选择排序 ...

  8. 【算法拾遗(java描写叙述)】--- 插入排序(直接插入排序、希尔排序)

    插入排序基本思想 每次将一个待排序的记录按其keyword大小插入到前面已经拍好序的子文件的适当位置,直到全部记录插入完毕为止. 直接插入排序 基本思想 直接插入排序的基本操作是将一个记录插入到已排好 ...

  9. 每天进步一点点——Linux中的文件描写叙述符与打开文件之间的关系

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/38965239 1. 概述     在Linux系统中一切皆能够看成是文件,文件又可分为:普通 ...

随机推荐

  1. 安装Windows10+Ubentu18双系统

    1.先安装Windows系统,安装完成后,使用磁盘管理工具划分出一定的freespace空间留给linux安装系统用. 2.使用Universal-USB-Installer制作ubentu启动U盘. ...

  2. C语言程序返回值为int的时候,不同值代表不同的意义

    这个是我自己给自己的代码定的标准,方便自己阅读与编码.他人代码情况不可套用 1 执行成功 0 出现错误,不影响程序执行 -1 执行失败 -2 程序内部致命错误,退出程序

  3. 25. TABLESPACES , 26. TABLE_CONSTRAINTS , 27. TABLE_PRIVILEGES

    25. TABLESPACES TABLESPACES表提供有关活动MySQL Cluster表空间的信息. TABLESPACES表有以下列: TABLESPACE_NAME :表空间名称 ENGI ...

  4. EPT和VPID简介

    EPT(Extended Page Tables,扩展页表),属于Intel的第二代硬件虚拟化技术,它是针对内存管理单元(MMU)的虚拟化扩展.EPT降低了内存虚拟化的难度(与影子页表相比),也提升了 ...

  5. vue App.vue router 过渡效果, keep-alive 结合使用示例

    1, router.js配置 每个路由的index值 2, router.js配置 每个路由的keepAlive值 app.vue 代码 <template> <div id=&qu ...

  6. Codeforces 5D Follow Traffic Rules

    [题意概述] 某个物体要从A途经B到达C,在通过B的时候速度不能超过vd.  它的加速度为a,最大速度为vm:AB之间距离为d,AC之间距离为L: 问物体最少花多少时间到达C. [题解] 分情况讨论. ...

  7. 激活windows10(已更新工具)

    激活windows10 1.用cmd命令: 自己动手,KMS激活win10 2016 长期服务版.步骤如下:命令提示符(管理员),依次输入以下3条命令 slmgr /ipk DCPHK-NFMTC-H ...

  8. sed之h;H和:a;N;ba使用精解(对段落进行操作)

    1) 文本: Handle 0x0058, DMI type 20, 19 bytes Memory Device Mapped Address         Starting Address: 0 ...

  9. Java学习之接口概念

    Java语言只支持单重继承,不支持多继承,即一个类只能有一个父类.但是在实际应用中,又经常需要使用多继承来解决问题.为了解决该问题,Java语言提供接口来实现类的多继承问题. 接口(英文interfa ...

  10. linux进程按启动时间排序命令

    show me the code... ps aux --sort=start_time|grep Full|grep -v grep