在字符串S中按照其先后顺序依次取出若干个字符,并讲它们排列成一个新的字符串,这个字符串就被称为原字符串的子串

         有两个字符串S1和S2,求一个最长公共子串,即求字符串S3,它同时为S1和S2的子串,且要求它的长度最长,就是这里的

最长公共子序列问题。

          最长公共子序列问题的递推条件如下:dp[i][j]表示s1前i个字符组成的前缀子串与s2前j个字符组成的前缀子串的最长公共子序列

          dp[0][ j ]( 0<=j<=m) = 0

          dp[ i ][0]( 0<=i<=n) = 0

          dp[ i ] [ j ] = dp[ i-1][ j-1] + 1 ( s1[i]==s2[j] )

          dp[ i ][ j ] = max{ dp[i-1][ j ],dp[i][ j-1]  } ( s1[i] != s2[j] )

#include<stdio.h>
#include<stdlib.h>
#include<string.h> int dp[][];
int max( int a,int b)
{
//选取最大值
return a>b? a:b;
}
int main()
{
char s1[],s2[];
int i,j;
int l1,l2;
while( scanf("%s%s",s1,s2)!=EOF){
l1 = strlen(s1);
l2 = strlen(s2);
for( i=; i<=l1; i++) dp[i][] = ;
for( j=; j<=l2; j++) dp[][j] = ;
for( i=; i<=l1; i++){
for( j=; j<=l2; j++){
if( s1[i-]!=s2[j-]) //字符串数组下标从0开始
dp[i][j] = max( dp[i][j-],dp[i-][j]);
else dp[i][j] = dp[i-][j-]+;
}
}
printf("%d\n",dp[l1][l2]);
} return ;
}

动态规划之最长公共子序列(LCS)的更多相关文章

  1. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  2. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  3. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  4. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  5. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  6. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  7. 51Nod 1006:最长公共子序列Lcs(打印LCS)

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  8. 51nod 1006 最长公共子序列Lcs 【LCS/打印path】

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  9. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  10. 51nod 1006:最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. Increasing Sequence CodeForces - 11A

    Increasing Sequence CodeForces - 11A 很简单的贪心.由于不能减少元素,只能增加,过程只能是从左到右一个个看过去,看到一个小于等于左边的数的数就把它加到比左边大,并记 ...

  2. 暴力/DP Codeforces Beta Round #22 (Div. 2 Only) B. Bargaining Table

    题目传送门 /* 题意:求最大矩形(全0)的面积 暴力/dp:每对一个0查看它左下的最大矩形面积,更新ans 注意:是字符串,没用空格,好事多磨,WA了多少次才发现:( 详细解释:http://www ...

  3. fastboot命令详解

    Android手机分区(每个分区都有相应的img文件对应):开机启动画面区(splash1),数据恢复区(recovery),内核区(boot), 系统区(system),数据缓存区(cache),用 ...

  4. html下的图片链接有边框的解决方法

    使用dreamweaver创建网页后,上传到网站发现网页的图片链接有非常难看的蓝色边框,而在dw下是没有的 后来查看了一下网上的资料,发现加一个border="0"即可,默认是有边 ...

  5. 关于tomcat一些简介

    window下,在tomcat的bin目录下,用cmd输入startup.bat 即可启动tomcat 成功启动Tomcat后,通过访问http://localhost:8080/便可以使用Tomca ...

  6. VS Code 设置取消打开文件目录的自动定位跟踪功能。

    文件-->首选项-->设置-->在搜索栏中搜索:explorer.autoReveal;    去掉勾选即可.

  7. IO流的原理和概念

    在程序中如何读写文件?不同的编程语言有不同的方式,而 JAVA 则提出了“流”的概念,通过“流”来读写文件 什么是流: 流(Stream)是指一连串的数据(字符或字节),是以先进先出的方式发送信息的通 ...

  8. SpringIOC学习_属性注入(依赖注入)

    一.应用场景:Spring会帮创建实现类的实例,但是有时候我们还需要在类中设置一些属性用于传入设置值,这些跟类紧密关联的属性就叫依赖,通过spring帮忙设置的过程叫依赖注入. 二.依赖注入的实现 A ...

  9. Spark学习之Spark Streaming(9)

    Spark学习之Spark Streaming(9) 1. Spark Streaming允许用户使用一套和批处理非常接近的API来编写流式计算应用,这就可以大量重用批处理应用的技术甚至代码. 2. ...

  10. redis 在windows 集群

    前言:为什么自己要花时间写一篇redis集群文章,网上众多的文章大都是思路正确,但是细节不足,这里写一篇文章记录自己部署时候遇到的问题,当下次再部署的时候避免跳入重复的坑. 上篇文章(http://w ...