动态规划之最长公共子序列(LCS)
在字符串S中按照其先后顺序依次取出若干个字符,并讲它们排列成一个新的字符串,这个字符串就被称为原字符串的子串
有两个字符串S1和S2,求一个最长公共子串,即求字符串S3,它同时为S1和S2的子串,且要求它的长度最长,就是这里的
最长公共子序列问题。
最长公共子序列问题的递推条件如下:dp[i][j]表示s1前i个字符组成的前缀子串与s2前j个字符组成的前缀子串的最长公共子序列
dp[0][ j ]( 0<=j<=m) = 0
dp[ i ][0]( 0<=i<=n) = 0
dp[ i ] [ j ] = dp[ i-1][ j-1] + 1 ( s1[i]==s2[j] )
dp[ i ][ j ] = max{ dp[i-1][ j ],dp[i][ j-1] } ( s1[i] != s2[j] )
#include<stdio.h>
#include<stdlib.h>
#include<string.h> int dp[][];
int max( int a,int b)
{
//选取最大值
return a>b? a:b;
}
int main()
{
char s1[],s2[];
int i,j;
int l1,l2;
while( scanf("%s%s",s1,s2)!=EOF){
l1 = strlen(s1);
l2 = strlen(s2);
for( i=; i<=l1; i++) dp[i][] = ;
for( j=; j<=l2; j++) dp[][j] = ;
for( i=; i<=l1; i++){
for( j=; j<=l2; j++){
if( s1[i-]!=s2[j-]) //字符串数组下标从0开始
dp[i][j] = max( dp[i][j-],dp[i-][j]);
else dp[i][j] = dp[i-][j-]+;
}
}
printf("%d\n",dp[l1][l2]);
} return ;
}
动态规划之最长公共子序列(LCS)的更多相关文章
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 51nod 1006 最长公共子序列Lcs 【LCS/打印path】
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 每日一题-——最长公共子序列(LCS)与最长公共子串
最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...
- 51nod 1006:最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- D. Arpa's weak amphitheater and Mehrdad's valuable Hoses 分组背包模板题
http://codeforces.com/problemset/problem/742/D 并查集预处理出所有关系. 一开始的时候,我预处理所有关系后,然后选择全部的时候,另起了一个for,然后再判 ...
- Laravel环境搭建
在有了初步认知后,当然就要开始在自己的电脑上搭建Laravel的开发环境了. 系统环境需求 PHP 5.3.7或者更高版本,如果没有系统没有安装PHP环境的,请到下面地址下载:http://cn2.p ...
- ajax通过新闻id获取列表
<div class="index_main"> <div class="page_l"> <i ...
- QT入门学习
第一个QT程序 #include<QApplication> #include<QDialog> #include<QLabel> #include<QTex ...
- spark性能优化(包括优化原理及基本方法)
https://www.jianshu.com/p/b8841a8925fb spark性能优化 1.诊断内存的消耗 2. 高性能序列化类库 3. 优化数据结构 4. 对多次使用的rdd进行持久化或者 ...
- 【译】x86程序员手册39-10.3切换到保护模式
10.3 Switching to Protected Mode 切换到保护模式 Setting the PE bit of the MSW in CR0 causes the 80386 to b ...
- ubuntu15.04安装 RVM
首先,请参考这篇文章 https://ruby-china.org/wiki/rvm-guide RVM 官方网站 https://rvm.io/ 1 由于现在很多网站都转向https链接,所以,根据 ...
- zabbix监控之grafana
zabbix监控之grafana
- 迅为八核cortex a53开发板android/linux/Ubuntu系统
详情请点击了解:http://www.topeetobard.com 店铺:https://arm-board.taobao.com 核心板: 提供1G和2G内存版本,全机器焊接,杜绝手工,批量无忧. ...
- python多个装饰器的执行顺序
def decorator_a(func): print 'Get in decorator_a' def inner_a(*args, **kwargs): print 'Get in inner_ ...