Description

 

Write a program that finds and displays all pairs of 5-digit numbers that between them use the digits 0 through 9 once each, such that the first number divided by the second is equal to an integer N, where . That is,

abcde / fghij =N

where each letter represents a different digit. The first digit of one of the numerals is allowed to be zero.

Input

Each line of the input file consists of a valid integer N. An input of zero is to terminate the program.

Output

Your program have to display ALL qualifying pairs of numerals, sorted by increasing numerator (and, of course, denominator).

Your output should be in the following general form:

xxxxx / xxxxx =N

xxxxx / xxxxx =N

.

.

In case there are no pairs of numerals satisfying the condition, you must write ``There are no solutions for N.". Separate the output for two different values of N by a blank line.

Sample Input

61
62
0

Sample Output

There are no solutions for 61.

79546 / 01283 = 62
94736 / 01528 = 62

暴力解决,不过要注意输出时最后一组数据不能多出空行

#include"iostream"
#include"cstring"
using namespace std; int n;
int book[]= {}; bool judge(int c,int cc,int ccc)
{
memset(book,,sizeof(book));
if(ccc==) book[]++;
int t,f;
t=c;
f=;
while(t/>)
{
book[t%]++;
if(book[t%]>)
{
f=;
}
t/=;
}
book[t]++;
if(book[t]>)
{
f=;
}
t=cc;
while(t/>)
{
book[t%]++;
if(book[t%]>)
{
f=;
}
t/=;
}
book[t]++;
if(book[t]>)
{
f=;
}
if(f) return false;
return true;
} void go()
{ int i,flag;
flag=;
for(i=; i<=; i++)
{
if(i*n>) break;
if(judge(i,i*n,))
{
if((i*n)/==) continue;
if(i/==&&judge(i,i*n,))
{
cout<<i*n<<" / 0"<<i<<" = "<<n<<endl;
flag=;
}
if(judge(i,i*n,)&&i/!=)
{
cout<<i*n<<" / "<<i<<" = "<<n<<endl;
flag=;
} }
}
if(flag==) cout<<"There are no solutions for "<<n<<'.'<<endl;
} int main()
{
int x=;
while(cin>>n&&n)
{
if(x>) cout<<endl;
x++;
go(); }
return ;
}

Division的更多相关文章

  1. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  2. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  3. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  4. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  5. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  6. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  7. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  8. hdu 1034 (preprocess optimization, property of division to avoid if, decreasing order process) 分类: hdoj 2015-06-16 13:32 39人阅读 评论(0) 收藏

    IMO, version 1 better than version 2, version 2 better than version 3. make some preprocess to make ...

  9. uva 725 Division(暴力模拟)

    Division 紫书入门级别的暴力,可我还是写了好长时间 = = [题目链接]uva 725 [题目类型]化简暴力 &题解: 首先要看懂题意,他的意思也就是0~9都只出现一遍,在这2个5位数 ...

  10. UVALive 7327 Digit Division (模拟)

    Digit Division 题目链接: http://acm.hust.edu.cn/vjudge/contest/127407#problem/D Description We are given ...

随机推荐

  1. bzoj1303[CQOI2008]中位数图 / 乱搞

    题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式: 第一行为两个正整数n和b,第二行为1 ...

  2. spring进行事务管理

    一:spring使用注解的方式进行事务声明 1.spring的声明式事务: 用jdbc的事务管理器:DataSourceTransactionManager 首先在applicationContext ...

  3. 【react native】有关入坑3个月RN的心路历程

    由于一些原因,笔者最近变更到了RN的团队,回归到了hybrid app的开发的圈子中,固然是有蛮多新鲜感和新机遇的,不过遥想起以前在hybrid中各种view之前跳转的头疼等各种问题,笔者怀着忐忑的心 ...

  4. 数据结构 - 静态单链表的实行(C语言)

    静态单链表的实现 1 静态链表定义 静态链表存储结构的定义如下: /* 线性表的静态链表存储结构 */ #define MAXSIZE 1000 /* 假设链表的最大长度是1000 */ typede ...

  5. 2017 JUST Programming Contest 3.0 I. Move Between Numbers

    I. Move Between Numbers time limit per test 2.0 s memory limit per test 256 MB input standard input ...

  6. 题解报告:poj 3061 Subsequence(前缀+二分or尺取法)

    Description A sequence of N positive integers (10 < N < 100 000), each of them less than or eq ...

  7. 题解报告:poj 2185 Milking Grid(二维kmp)

    Description Every morning when they are milked, the Farmer John's cows form a rectangular grid that ...

  8. WebSphere中配置的数据源在Web应用中引用的写法

    WebSphere中配置的数据源在Web应用中引用时名称一定要和数据源的JNDI名称保持一致,否则会出现无法找到数据源的错误. 引用WAS的数据源时只需要与JNDI名称保持一致即可. 引用Tomcat ...

  9. break跳出嵌套循环体

    package com.wh.Object; public class Test { public static void main(String[] args) { // TODO Auto-gen ...

  10. chromedriver与chrome版本对应

    今天把手头有的一些关于selenium测试的资源整理了一下,分享出来. 1. 所有版本chrome下载 是不是很难找到老版本的chrome?博主收集了几个下载chrome老版本的网站,其中哪个下载的是 ...