[bzoj2443][Usaco2011 Open]奇数度数_树形dp_生成树_并查集
奇数度数 bzoj-2443 Usaco-2011 Open
题目大意:给定一个n个点m条边的无向图,问是否有一种选出一些边的方式使得所有点的度数都是奇数。
注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 10^5$。
想法:
结论题:对于一个联通块来讲,如果求出它的生成树。只考虑生成树上的边的选取情况是否可能即是这个联通块的答案。
证明:如果存在一种,选取生成树以外的边满足题意,我们可以将这条边覆盖的树边全部取反,将该边舍去,仍然满足题意。
故此,用并查集求出生成树,然后在上面跑树形dp即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
#define M 100010
using namespace std;
int head[N],to[N<<1],nxt[N<<1],val[N<<1],cnt;
int is[M],tot,n,m,fa[N],f[N],vis[N];
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
void add(int u,int v,int w) {to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;}
void dfs(int pos,int fa)
{
int now=0; vis[pos]=1;
for(int i=head[pos];i;i=nxt[i]) if(to[i]!=fa)
{
dfs(to[i],pos);
if(f[to[i]]) now++;
else is[val[i]]=1,tot--;
}
f[pos]=!(now&1);
}
int main()
{
n=rd(),m=rd(); tot=m;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++)
{
int x=rd(),y=rd();
int dx=find(x),dy=find(y);
if(dx!=dy) add(x,y,i),add(y,x,i),fa[dx]=dy;
else is[i]=1,tot--;
}
for(int i=1;i<=n;i++) if(!vis[i])
{
dfs(i,0); if(f[i]) {puts("-1"); return 0;}
}
printf("%d\n",tot);
for(int i=1;i<=m;i++) if(!is[i]) printf("%d\n",i);
return 0;
}
小结:好题啊,真心好题。首先这个结论不是想Gem那样没法猜的结论,这个结论是可以证出来的。其次树形dp很常规啊!
[bzoj2443][Usaco2011 Open]奇数度数_树形dp_生成树_并查集的更多相关文章
- BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集+树形DP
BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集. Description 奶牛们遭到了进攻!在他们的共和国里,有N(1 <= N <=50,000)个城市,由M(1 ...
- [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集
骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...
- [bzoj2097][Usaco2010 Dec]Exercise 奶牛健美操_贪心_树形dp_二分
Exercise bzoj-2097 Usaco-2010 Dec 题目大意:题目链接 注释:略. 想法:题目描述生怕你不知道这题在考二分. 关键是怎么验证?我们想到贪心的删边. 这样的策略是显然正确 ...
- BZOJ_1304_[CQOI2009]叶子的染色_树形DP
BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...
- BZOJ_1864_[Zjoi2006]三色二叉树_树形DP
BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...
- BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash
BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...
- B20J_4027_[HEOI2015]兔子与樱花_树形DP
B20J_4027_[HEOI2015]兔子与樱花_树形DP 题意: 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编 ...
- BZOJ_1040_[ZJOI2008]骑士_树形DP
BZOJ_1040_[ZJOI2008]骑士_树形DP 题意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪 ...
- BZOJ_1060_时态同步_树形DP
BZOJ_1060_时态同步_树形DP 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1060 分析:水水的树形DP. 用儿子的最大值更新父亲, ...
随机推荐
- AJPFX关于java数组排序
/** *将数组中的两个指定下标的元素交换位置 *@param arr 要交换元素的数组引用地址值 *@param a 数组索引 ...
- Java快速读取大文件
Java快速读取大文件 最近公司服务器监控系统需要做一个东西来分析Java应用程序的日志. 第一步探索: 首先我想到的是使用RandomAccessFile,因为他可以很方便的去获取和设置文件指针,下 ...
- jq一些常用的交互效果
jq回到顶部: //回到顶部 $(window).scroll(function() { //执行处理的代码 var a = document.body.scrollTop; if($(documen ...
- 使用迅为iTOP-iMX6开发板-uboot-修改默认环境变量
iTOP-iMX6 开发板烧写好之后,默认是 android 系统 9.7 寸屏幕的系统参数和屏幕参数.如下图.本文档主要介绍如何修改默认启动参数. 1. 重要的环境变量比较重要的环境变量或者说经常使 ...
- UI开发复杂度度量
1)要素的个数: 2)要素布局和渲染的复杂度: 3)交互的复杂度. 本质上分为两种:要素的复杂度和联系的复杂度. 联系包含要素间布局的联系与交互的联系,已经和外部上下文的联系.
- Adobe Dreamweaver CC 2014 代码颜色目录 dw
他的颜色代码配置文件,不在安装目录下,这让我好找啊~ C:\Users\Administrator\AppData\Roaming\Adobe\Dreamweaver CC 2014\zh_CN\Co ...
- CAD插入背景图片(网页版)
把图片作为背景图片可见但是不能编辑操作. 主要用到函数说明: _DMxDrawX::DrawImageToBackground 绘光栅图到背景.详细说明如下: 参数 说明 BSTR sFileName ...
- JavaSE-08 封装
学习要点 封装 访问控制符 包 封装 没有封装的代码有何缺陷? 例如:对狗狗的健康值赋值为-100.如何避免?——使用封装. 封装的概念 将类的某些信息隐藏在类内部,不允许外部程序直接访问,而是通过该 ...
- 一、认识spring框架
对于spring框架,作为Java开发人员肯定不陌生,大名鼎鼎,名声在外,但是对于spring框架没有进行过系统的学习,从今天开始学习并且记录一下spring框架的比较牛逼的特性. 一.spring简 ...
- js判断图片是否有效
var ImgObj=new Image(); ImgObj.src= 'http://192.168.10.6:8082/3D/SERVER_1_DELL_880.jpg'; if(ImgObj.f ...