UVA796 Critical Links —— 割边(桥)
题目链接:https://vjudge.net/problem/UVA-796
In a computer network a link L, which interconnects two servers, is considered critical if there are at least two servers A and B such that all network interconnection paths between A and B pass through L. Removing a critical link generates two disjoint sub–networks such that any two servers of a sub–network are interconnected. For example, the network shown in figure 1 has three critical links that are marked bold: 0 -1, 3 - 4 and 6 - 7. Figure 1: Critical links It is known that:
1. the connection links are bi–directional;
2. a server is not directly connected to itself;
3. two servers are interconnected if they are directly connected or if they are interconnected with the same server;
4. the network can have stand–alone sub–networks. Write a program that finds all critical links of a given computer network.
Input
The program reads sets of data from a text file. Each data set specifies the structure of a network and has the format: no of servers server0 (no of direct connections) connected server . . . connected server . . . serverno of servers (no of direct connections) connected server . . . connected server The first line contains a positive integer no of servers(possibly 0) which is the number of network servers. The next no of servers lines, one for each server in the network, are randomly ordered and show the way servers are connected. The line corresponding to serverk, 0 ≤ k ≤ no of servers − 1, specifies the number of direct connections of serverk and the servers which are directly connected to serverk. Servers are represented by integers from 0 to no of servers − 1.Input data are correct. The first data set from sample input below corresponds to the network in figure 1, while the second data set specifies an empty network.
Output
The result of the program is on standard output. For each data set the program prints the number of critical links and the critical links, one link per line, starting from the beginning of the line, as shown in the sample output below. The links are listed in ascending order according to their first element. The output for the data set is followed by an empty line.
Sample Input
8
0 (1) 1
1 (3) 2 0 3
2 (2) 1 3
3 (3) 1 2 4
4 (1) 3
7 (1) 6
6 (1) 7
5 (0)
0
Sample Output
3 critical links
0 - 1
3 - 4
6 - 7
0 critical links
题解:
题目要求:按字典序输出桥。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e3+; struct Edge
{
int to, next;
bool cut;
}edge[MAXN*MAXN*];
int tot, head[MAXN]; int Index, DFN[MAXN], Low[MAXN];
int bridge; void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++;
} void Tarjan(int u, int pre)
{
DFN[u] = Low[u] = ++Index;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(v==pre) continue;
if(!DFN[v])
{
Tarjan(v, u);
Low[u] = min(Low[u], Low[v]);
if( Low[v]>DFN[u])
{
edge[i].cut = edge[i^].cut = true;
bridge++;
}
}
else
Low[u] = min(Low[u], DFN[v]);
}
} void init()
{
bridge = tot = ;
memset(head, -, sizeof(head)); Index = ;
memset(DFN, , sizeof(DFN));
memset(Low, , sizeof(Low));
} int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
init();
int u, m, v;
for(int i = ; i<=n; i++)
{
scanf("%d (%d)", &u, &m);
for(int j = ; j<=m; j++)
{
scanf("%d", &v);
addedge(u, v);
addedge(v, u);
}
} for(int i = ; i<n; i++)
if(!DFN[i])
Tarjan(i, i); vector<pair<int, int> >a;
for(int u = ; u<n; u++)
for(int i = head[u]; i!=-; i = edge[i].next)
{
if(edge[i].cut && u<edge[i].to)
a.push_back(make_pair(u, edge[i].to));
} sort(a.begin(), a.end());
printf("%d critical links\n", bridge);
for(int i = ; i<a.size(); i++)
printf("%d - %d\n", a[i].first, a[i].second);
printf("\n");
}
}
UVA796 Critical Links —— 割边(桥)的更多相关文章
- [UVA796]Critical Links(割边, 桥)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- uva-796.critical links(连通图的桥)
本题大意:求出一个无向图的桥的个数并且按照顺序输出所有桥. 本题思路:注意判重就行了,就是一个桥的裸题. 判重思路目前知道的有两种,第一种是哈希判重,第二种和邻接矩阵的优化一样,就是只存图的上半角或者 ...
- UVA796 Critical Links(求桥) 题解
题意:求桥 思路:求桥的条件是:(u,v)是父子边时 low[v]>dfn[u] 所以我们要解决的问题是怎么判断u,v是父子边(也叫树枝边).我们在进行dfs的时候,要加入一个fa表示当前进行搜 ...
- UVA796 - Critical Links(Tarjan求桥)
In a computer network a link L, which interconnects two servers, is considered critical if there are ...
- Uva 796 Critical Links (割边+排序)
题目链接: Uva 796 Critical Links 题目描述: 题目中给出一个有可能不连通的无向图,求出这个图的桥,并且把桥按照起点升序输出(还有啊,还有啊,每个桥的起点要比终点靠前啊),这个题 ...
- Uva 796 Critical Links 找桥
这个题很简单,但是输入有毒,用字符串的我一直RE 然后换成这样瞬间AC #include <stdio.h> #include <string.h> #include < ...
- Uva796 Critical Links
用tarjan缩点 然后用dfn[u] < low[v]缩点并且保存起来 在sort一遍输出 #include<stdio.h> #include<string.h> # ...
- UVA796:Critical Links(输出桥)
Critical Links 题目链接:https://vjudge.net/problem/UVA-796 Description: In a computer network a link L, ...
- Light OJ 1026 - Critical Links (图论-双向图tarjan求割边,桥)
题目大意:双向联通图, 现在求减少任意一边使图的联通性改变,按照起点从小到大列出所有这样的边 解题思路:双向边模版题 tarjan算法 代码如下: #include<bits/stdc++.h& ...
随机推荐
- idea 中使用 出现 svn: E155036
在idea中使用svn checkout时 svn出现如上错误. 原因本地的工作副本太旧.command line进入本地工作副本的根目录,执行svn upgrade后 重启idea就可以了.
- 让你的 CDN 费用省 50% 以上!图片瘦身的正确姿势
七牛云新推出的图片瘦身功能是做什么的? 打开七牛云的「数据处理」中的「图片瘦身」功能,在图片受到访问时,能够实时对图片进行瘦身,在保证分辨率和画质不变的情况下,可以将图片最高缩小 80%.当「图片瘦身 ...
- python学习笔记--面向对象的编程和类
一.面向对象的编程 面向对象程序设计--Object Oriented Programming,简称oop,是一种程序设计思想.二.面向对象的特性类:class类,对比现实世界来说就是一个种类,一个模 ...
- 2016阿里校招python研发面试
一面: 面:说说你们学校的主修课程. 学校开的全是尼玛java课,这个我是想了有一会的. 面:看你简历写了会jquery,来问你个简单的jquery问题 :jQuery支不支持css引入. 呵呵 面: ...
- react.js 高阶组件----很简单的实例理解高阶组件思想
调试代码之前,我设置了两个缓存 分别是username和content 在控制台console设置两个缓存代码 localStorage.setItem('username','老王')localSt ...
- Python基础教程笔记——第3章:使用字符串
字符串是不可修改的,标准序列操作(索引,分片,判断成员资格,求长度,取最大值 最小值)对字符串都是有效的. 格式化字符串,类似于C语言的输出是的感觉. >>> format=&quo ...
- Heredoc和Nowdoc
就象heredoc结构类似于双引号字符串,Nowdoc结构是类似于单引号字符串的.Nowdoc结构很象heredoc结构,但是 nowdoc不进行解析操作 . 这种结构很适合用在不需要进行转义的PHP ...
- c++ 高性能日志库(muduo_AsyncLogging)
c++ 高性能日志库(muduo_AsyncLogging) 实现一个高效的网络日志库要解决那些问题? 首先明确一下问题的模型,这是一个典型的多生产者 单消费者问题,对于前端的日志库使用者来说,应该做 ...
- 洛谷——P1547 Out of Hay
P1547 Out of Hay 题目背景 奶牛爱干草 题目描述 Bessie 计划调查N (2 <= N <= 2,000)个农场的干草情况,它从1号农场出发.农场之间总共有M (1 & ...
- java基础 2 static关键字
2. static关键字 变量:静态变量在内存中只存在一份,只在类第一次实例化时初始化一次,同时类所有的实例都共享静态变量,可以直接同过类名 来访问他. 方法:静 ...