题目链接:https://vjudge.net/problem/HDU-2732

Leapin' Lizards

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3231    Accepted Submission(s): 1326

Problem Description
Your platoon of wandering lizards has entered a strange room in the labyrinth you are exploring. As you are looking around for hidden treasures, one of the rookies steps on an innocent-looking stone and the room's floor suddenly disappears! Each lizard in your platoon is left standing on a fragile-looking pillar, and a fire begins to rage below... Leave no lizard behind! Get as many lizards as possible out of the room, and report the number of casualties.
The pillars in the room are aligned as a grid, with each pillar one unit away from the pillars to its east, west, north and south. Pillars at the edge of the grid are one unit away from the edge of the room (safety). Not all pillars necessarily have a lizard. A lizard is able to leap onto any unoccupied pillar that is within d units of his current one. A lizard standing on a pillar within leaping distance of the edge of the room may always leap to safety... but there's a catch: each pillar becomes weakened after each jump, and will soon collapse and no longer be usable by other lizards. Leaping onto a pillar does not cause it to weaken or collapse; only leaping off of it causes it to weaken and eventually collapse. Only one lizard may be on a pillar at any given time.
 
Input
The input file will begin with a line containing a single integer representing the number of test cases, which is at most 25. Each test case will begin with a line containing a single positive integer n representing the number of rows in the map, followed by a single non-negative integer d representing the maximum leaping distance for the lizards. Two maps will follow, each as a map of characters with one row per line. The first map will contain a digit (0-3) in each position representing the number of jumps the pillar in that position will sustain before collapsing (0 means there is no pillar there). The second map will follow, with an 'L' for every position where a lizard is on the pillar and a '.' for every empty pillar. There will never be a lizard on a position where there is no pillar.Each input map is guaranteed to be a rectangle of size n x m, where 1 ≤ n ≤ 20 and 1 ≤ m ≤ 20. The leaping distance is
always 1 ≤ d ≤ 3.
 
Output
For each input case, print a single line containing the number of lizards that could not escape. The format should follow the samples provided below.
 
Sample Input
4
3 1
1111
1111
1111
LLLL
LLLL
LLLL
3 2
00000
01110
00000
.....
.LLL.
.....
3 1
00000
01110
00000
.....
.LLL.
.....
5 2
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........
 
Sample Output
Case #1: 2 lizards were left behind.
Case #2: no lizard was left behind.
Case #3: 3 lizards were left behind.
Case #4: 1 lizard was left behind.
 
Source
 
Recommend
zty

题意:

在一个n*m的地图上, 有一些高度不一柱子, 又有一些青蛙站在柱子上,且一根柱子最多只能站一只青蛙。青蛙一次最多可跳跃d个距离,即:abs(x-xx)+abs(y-yy)<=d,且每跳一次,青蛙原来站着的柱子的高度会下降一个单位(作用力与反作用力?),当柱子的高度为0时,就无效了。当青蛙跳出界时,才算安全,问:最少有多少个青蛙不能跳出地图?

题解:

可用网络流建模求解,建图方法如下:

1.将每个柱子拆成两个点u、u',u用于跳入,u'用于跳出,且连一条边:u-->u',容量为高度,以限制最大跳跃次数。

2.设置超级源点,如果一根柱子上有青蛙,那么从超级源点向该柱子连一条边,容量为1,表明有一只青蛙。

3.设置超级汇点,如果从某根柱子上能够一步跳出地图,那么就从该柱子往超级汇点连一条边,容量为该柱子的高度(容量),表明从这根柱子跳出界的青蛙最多能有多少只。

4.如果u柱子能跳到v柱子,那么就连一条边u-->v,容量为u柱子的高度(容量),表明从u柱子最多能有多少只青蛙跳到v柱子。

5.跑最大流算法,所求得的就是能跳出地图的最大青蛙数,再用总的青蛙数减之,就是答案。

领接矩阵:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 1e3+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int T, n, m, d;
bool inbroad(int x, int y)
{
return (x>= && x<n && y>= && y<m);
} char pillar[][], lizard[][];
int id[][], pnum, lnum;
int main()
{
scanf("%d", &T);
for(int kase = ; kase<=T; kase++)
{
scanf("%d%d", &n, &d);
for(int i = ; i<n; i++) scanf("%s", pillar[i]);
for(int i = ; i<n; i++) scanf("%s", lizard[i]);
m = strlen(pillar[]); pnum = ; lnum = ;
for(int i = ; i<n; i++)
for(int j = ; j<m; j++)
{
if(lizard[i][j]=='L') lnum++;
if(pillar[i][j]-'') id[i][j] = pnum++;
} int start = *pnum, end = *pnum+, N = *pnum+;
memset(maze, , sizeof(maze));
for(int i = ; i<n; i++)
for(int j = ; j<m; j++)
{
int cap = pillar[i][j]-'';
if(cap)
{
if(lizard[i][j]=='L') maze[start][id[i][j]] = ;
maze[id[i][j]][pnum+id[i][j]] = cap;
bool flag = false;
for(int xd = -d; xd<=d; xd++) //枚举横坐标方向
for(int yd = abs(xd)-d; yd<=d-abs(xd); yd++) //枚举纵坐标方向
{
if(inbroad(i+xd, j+yd) && (pillar[i+xd][j+yd]-'')) maze[pnum+id[i][j]][id[i+xd][j+yd]] = cap;
if(!inbroad(i+xd, j+yd)) flag = true;
}
if(flag) maze[pnum+id[i][j]][end] = cap;
}
} int left = lnum - sap(start, end, N);
if(left==) printf("Case #%d: no lizard was left behind.\n", kase);
else if(left==) printf("Case #%d: 1 lizard was left behind.\n", kase);
else printf("Case #%d: %d lizards were left behind.\n", kase, left);
}
}

邻接表:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 1e3+; struct Edge
{
int to, next, cap, flow;
}edge[MAXM];
int tot, head[MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN]; void init()
{
tot = ;
memset(head, -, sizeof(head));
} void add(int u, int v, int w)
{
edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = ;
edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].flow = ;
edge[tot].next = head[v]; head[v] = tot++;
} int sap(int start, int end, int nodenum)
{
memset(dep, , sizeof(dep));
memset(gap, , sizeof(gap));
memcpy(cur, head, sizeof(head));
int u = pre[start] = start, maxflow = ,aug = INF;
gap[] = nodenum;
while(dep[start]<nodenum)
{
loop:
for(int i = cur[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap-edge[i].flow && dep[u]==dep[v]+)
{
aug = min(aug, edge[i].cap-edge[i].flow);
pre[v] = u;
cur[u] = i;
u = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u,u = pre[u])
{
edge[cur[u]].flow += aug;
edge[cur[u]^].flow -= aug;
}
aug = INF;
}
goto loop;
}
}
int mindis = nodenum;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap-edge[i].flow && mindis>dep[v])
{
cur[u] = i;
mindis = dep[v];
}
}
if((--gap[dep[u]])==)break;
gap[dep[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int T, n, m, d;
bool inbroad(int x, int y)
{
return (x>= && x<n && y>= && y<m);
} char pillar[][], lizard[][];
int id[][], pnum, lnum;
int main()
{
scanf("%d", &T);
for(int kase = ; kase<=T; kase++)
{
scanf("%d%d", &n, &d);
for(int i = ; i<n; i++) scanf("%s", pillar[i]);
for(int i = ; i<n; i++) scanf("%s", lizard[i]);
m = strlen(pillar[]); pnum = ; lnum = ;
for(int i = ; i<n; i++)
for(int j = ; j<m; j++)
{
if(lizard[i][j]=='L') lnum++;
if(pillar[i][j]-'') id[i][j] = pnum++;
} int start = *pnum, end = *pnum+, N = *pnum+;
init(); for(int i = ; i<n; i++)
for(int j = ; j<m; j++)
{
int cap = pillar[i][j]-'';
if(cap)
{
if(lizard[i][j]=='L') add(start, id[i][j], );
add(id[i][j], pnum+id[i][j], cap);
bool flag = false;
for(int xd = -d; xd<=d; xd++) //枚举横坐标方向
for(int yd = abs(xd)-d; yd<=d-abs(xd); yd++) //枚举纵坐标方向
{
if(inbroad(i+xd, j+yd) && (pillar[i+xd][j+yd]-'')) add(pnum+id[i][j], id[i+xd][j+yd], cap);
if(!inbroad(i+xd, j+yd)) flag = true;
}
if(flag) add(pnum+id[i][j], end, cap);
}
} int left = lnum - sap(start, end, N);
if(left==) printf("Case #%d: no lizard was left behind.\n", kase);
else if(left==) printf("Case #%d: 1 lizard was left behind.\n", kase);
else printf("Case #%d: %d lizards were left behind.\n", kase, left);
}
}

HDU2732 Leapin' Lizards —— 最大流、拆点的更多相关文章

  1. hdu2732 Leapin' Lizards 最大流+拆点

    Your platoon of wandering lizards has entered a strange room in the labyrinth you are exploring. As ...

  2. hdu 2732 Leapin' Lizards 最大流 拆点 建图

    题目链接 题意 给定一张网格,格子中有些地方有柱子,有些柱子上面有蜥蜴. 每个柱子只能承受有限只蜥蜴从上面经过.每只蜥蜴每次能走到相距曼哈顿距离\(\leq k\)的格子中去. 问有多少只蜥蜴能走出网 ...

  3. hdu 2732 Leapin' Lizards (最大流 拆点建图)

    Problem Description Your platoon of wandering lizards has entered a strange room in the labyrinth yo ...

  4. HDU2732 Leapin' Lizards 最大流

    题目 题意: t组输入,然后地图有n行m列,且n,m<=20.有一个最大跳跃距离d.后面输入一个n行的地图,每一个位置有一个值,代表这个位置的柱子可以经过多少个猴子.之后再输入一个地图'L'代表 ...

  5. hdu2732 Leapin' Lizards (网络流dinic)

    D - Leapin' Lizards Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU2732 Leapin' Lizards

    Leapin' Lizards Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  7. HDU2732 Leapin' Lizards 网络流 最大流 SAP

    原文链接http://www.cnblogs.com/zhouzhendong/p/8362002.html 题目传送门 - HDU2732 题意概括 给你一个网格,网格上的一些位置上有一只蜥蜴,所有 ...

  8. HDU-2732-leapin'Lizards(最大流, 拆点)

    链接: https://vjudge.net/problem/HDU-2732 题意: Your platoon of wandering lizards has entered a strange ...

  9. HDU2732:Leapin' Lizards(最大流)

    Leapin' Lizards Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. R读数据stringsAsFactors=F,存数据时row.names = F

    stringsAsFactors=F   以前在r里读数据,经常把character读成factor,还得费半天劲把它转回来,尤其是把factor转成numeric还没有那么直接.例如: dat< ...

  2. HDU - 5572 An Easy Physics Problem (计算几何模板)

    [题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...

  3. python的__name__和dir()属性

    1.__name__属性 一个模块被另一个程序第一次引入时,其主程序将运行.如果我们想在模块被引入时,模块中的某一程序块不执行,我们可以用__name__属性来使该程序块仅在该模块自身运行时执行.示例 ...

  4. Linux下xz与tar的区别

    同一文件,tar.xz格式比tar.gz格式小了三分之一! 说明: xz是一个使用LZMA压缩算法的无损数据压缩文件格式. 和gzip与bzip2一样,同样支持多文件压缩,但是约定不能将多于一个的目标 ...

  5. 【kotlin】kotlin中List中添加List怎么操作

    如题,List集合添加一个List集合怎么操作 如上,现在有了List<A>,A类中有个字段List<B>, 新创建一个List<B>,想把LIst<A> ...

  6. 【Todo】Java8新特性学习

    参考这篇文章吧: http://blog.csdn.net/vchen_hao/article/details/53301073  还有一个系列

  7. 【转】 nginx rewrite 伪静态配置参数详细说明

    nginx rewrite 伪静态配置参数和使用例子 附正则使用说明 正则表达式匹配,其中: * ~ 为区分大小写匹配  * ~* 为不区分大小写匹配  * !~和!~*分别为区分大小写不匹配及不区分 ...

  8. openERP邮件(发信、收信)

    openERP里的邮件处理主要有个2个模块处理 mail -核心 fetchmail -接收邮件     Alias domain和alias name     配置domain alias. Set ...

  9. 时间格式 2016-08-15T16:00:00.000Z

    我修改的时间是2016-08-16(转换成Date后默认为2016-08-16 00:00:00),而我得到的时间却是2016-08-15T16:00:00.000Z 联想到我们当前的时区是+8区   ...

  10. virtual member functions(单一继承情况)

    virtual member functions的实现(就单一继承而言): 1.实现:首先会给有多态的class object身上增加两个members:一个字符串或数字便是class的类型,一个是指 ...