[ POI 2011 ] Party
\(\\\)
\(Description\)
给定一张 \(N\ (\ N\equiv 0\pmod{3}\ )\) 个节点,,\(M\)条边的图,并且保证该图存在一个大小至少为\(\frac{2}{3}N\)的团,以包含节点编号的形式输出该图的任意一个大小为\(\frac N 3\)的团。
- \(N\in [3,3\times 10^3]\),\(M\in [\frac{\frac{2}{3}N\times (\frac{2}{3}N-1)}{2},\frac{N(N-1)}{2}]\)
\(\\\)
\(Solution\)
脑洞题。反图贪心的做法是可行的,这里写一个不知道神仙出题人怎么想的更简单的做法。
注意到图中最大团大小\(\ge\frac{2}{3}N\),也就是说不在团内的点数\(\le\frac{N}{3}\),注意到属于同一个团的两个点一定满足两点有连边,换句话说,没有边相连的点对一定不属于同一个团。
而不属于最大团的点最多只有\(\frac{N}{3}\)个,所以枚举到的没有连边的点对最多只有这么多个(枚举到的点对直接除掉,不再用于判断其他点),枚举到的点最多只有\(\frac{2}{3}N\)个。去掉这些被枚举到的点,剩下的点最少也有\(\frac{N}{3}\)个,足够构成答案。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 3010
#define R register
#define gc getchar
using namespace std;
int n,m;
bool edge[N][N],v[N];
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int main(){
n=rd(); m=rd();
for(R int i=1,u,v;i<=m;++i){
u=rd(); v=rd(); edge[u][v]=edge[v][u]=1;
}
for(R int i=1;i<=n;++i)
if(!v[i]){
for(R int j=i+1;j<=n;++j)
if(!v[j]&&!edge[i][j]){v[i]=v[j]=1;break;}
}
for(R int i=1,cnt=0;i<=n;++i)
if(!v[i]){printf("%d ",i);if(++cnt==n/3)break;}
return 0;
}
[ POI 2011 ] Party的更多相关文章
- 解题:POI 2011 Dynamite
题面 从零开始的DP学习系列之叁 树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况 显然的二分答案, ...
- 解题:POI 2011 Strongbox
首先洛谷的题面十分的劝退(至少对我这个菜鸡来说是这样),我来解释一下(原来的英文题面): 有一个有若干个密码(每个密码都可以开箱子)的密码箱,密码是在$0$到$n-1$的数中的,且所有的密码都满足一个 ...
- 【BZOJ 2216】【POI 2011】Lightning Conductor
http://www.lydsy.com/JudgeOnline/problem.php?id=2216 学习了一下决策单调性. 这道题决策单调性比较明显,不详细证了. 对于一个决策i,如果在i之前的 ...
- 【BZOJ 2212】【POI 2011】Tree Rotations
http://www.lydsy.com/JudgeOnline/problem.php?id=2212 自下而上贪心. 需要用权值线段树来记录一个权值区间内的出现次数. 合并线段树时统计逆序对的信息 ...
- bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...
- [ POI 2011 ] Dynamite
\(\\\) \(Description\) 一棵\(N\)个节点的树,树上有\(M\)个节点是关键点,选出\(K\)个特殊点,使得所有关键点到特殊点的距离中最大的最小,输出最大值最小为多少. \(N ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- Solution -「POI 2011」「洛谷 P3527」MET-Meteors
\(\mathcal{Description}\) Link. 给定一个大小为 \(n\) 的环,每个结点有一个所属国家.\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上 ...
- POI题解整合
我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...
随机推荐
- 【01】JSON基本信息
[魔芋注] 就是一种格式,数据组合的格式. JSON:JavaScript 对象表示法(JavaScript Object Notation).JSON 是存储和交换.传输(数据)文本信息的语法( ...
- idea结合git版本控制
IntelliJ-IDEA和Git.GitHub.Gitlab的使用(五)----https://blog.csdn.net/milsevol/article/details/72792468
- nyoj 95 众数问题(set)
众数问题 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 所谓众数,就是对于给定的含有N个元素的多重集合,每个元素在S中出现次数最多的成为该元素的重数, 多重集合S重 ...
- HDU 1081 DP找最大和的矩阵
题目大意: 在一个给定的大矩阵中找一个小型的矩阵,使这个矩阵中的元素和最大 可以先来看下面这个问题: 原来有做过在一个给定的数字序列中找一个最大和子序列,核心代码如下: ]; ]; ; ; int r ...
- codevs1213 解的个数
题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...
- 这个贴子的内容值得好好学习--实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化
感觉要DJANGO用得好,ORM必须要学好,不管理是内置的,还是第三方的ORM. 最最后还是要到SQL.....:( 这一关,慢慢练啦.. 实例详解Django的 select_related 和 p ...
- NOIP2010 提高组合集
NOIP 2010 提高组合集 T1 机器翻译 模拟题,用一个栈模拟,桶记录即可. #include <iostream> #include <cstdio> #include ...
- 登陆模块,这个是很重要的模块,有shiro和spring security专门的权限认证框架
登陆模块,这个是很重要的模块,有shiro和spring security专门的权限认证框架
- TreeView获取目录下的所有文件
/// <summary> /// TreeView获取目录下的所有文件 /// </summary> /// <param name="tree"& ...
- 操作系统开发之——打开A20
我们在上一篇文章提到.怎样制作Bootsect.当然,人总是贪婪的,制作完Bootsect又想着做Setup了,Setup主要工作是打开A20,进入保护模式,等等. 一.介绍A20 这是一个历史性问题 ...