The Factor 

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=628&pid=1001

Description

有一个数列,FancyCoder沉迷于研究这个数列的乘积相关问题,但是它们的乘积往往非常大。幸运的是,FancyCoder只需要找到这个巨大乘积的最小的满足如下规则的因子:这个因子包含大于两个因子(包括它本身;比如,4有3个因子,因此它是满足这个要求的一个数)。你需要找到这个数字并输出它。但是我们知道,对于某些数可能没有这样的因子;在这样的情况下,请输出-1.

Input

输入文件的第一行有一个正整数T \ (1 \le T \le 15)T (1≤T≤15),表示数据组数。

接下去有TT组数据,每组数据的第一行有一个正整数n \ (1 \le n \le 100)n (1≤n≤100).

第二行有nn个正整数a_1, \ldots, a_n \ (1 \le a_1, \ldots ,a_n \le 2\times 10^9)a​1​​,…,a​n​​ (1≤a​1​​,…,a​n​​≤2×10​9​​), 表示这个数列。

Output

输出TT行TT个数表示每次询问的答案。

Sample Input

2
3
1 2 3
5
6 6 6 6 6

Sample Output

6
4

HINT

 

题意

给你一个n个数

有一个数是由这N个数乘起来的,然后让你输出这个数的不是素数的最小的因子

题解:

对于每一个数都分解质因数,然后取最小的两个乘起来就好了

代码来自qseqesze

//
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#include<bitset>
#include<set>
#include<vector>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a));
#define TS printf("111111\n");
#define FOR(i,a,b) for( int i=a;i<=b;i++)
#define FORJ(i,a,b) for(int i=a;i>=b;i--)
#define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define inf 100000
#define maxn 300000
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>'')
{if(ch=='-')f=-;
ch=getchar();}
while(ch>=''&&ch<='')
{x=x*+ch-'';
ch=getchar();}
return x*f;
}
//**************************************** ///****************************************************************
/// Miller_Rabin 算法进行素数测试
///速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;///随机算法判定次数,S越大,判错概率越小 ///计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
/// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} ///计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} ///以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
///一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} /// Miller_Rabin()算法素数判定
///是素数返回true.(可能是伪素数,但概率极小)
///合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;///rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
///pollard_rho 算法进行质因数分解
//************************************************
long long factor[];///质因数分解结果(刚返回时是无序的)
int tol;///质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//??????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
///对n进行素因子分解 ll Div[];
int tot=; void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
Div[tot++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
}
//&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ll p[maxn];
int main()
{
int t=read();
while(t--)
{
int n=read();
memset(Div,,sizeof(Div));
tot=;
for(int i=;i<=n;i++)
{
scanf("%I64d",&p[i]);
if(p[i]!=)
findfac(p[i]);
}
sort(Div,Div+tot);
if(tot<=)
printf("-1\n");
else
{
cout<<Div[]*Div[]<<endl;
}
}
}

代码

HDU 5428 分解质因数的更多相关文章

  1. hdu 5428 The Factor 分解质因数

    The Factor  Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...

  2. java分解质因数

      package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...

  3. 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)

    1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...

  4. 【python】将一个正整数分解质因数

    def reduceNum(n): '''题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5''' print '{} = '.format(n), : print 'Pleas ...

  5. light oj 1236 分解质因数

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...

  6. 【基础数学】质数,约数,分解质因数,GCD,LCM

    1.质数: 质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数. 2.约数: 如 ...

  7. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  8. cdoj 1246 每周一题 拆拆拆~ 分解质因数

    拆拆拆~ Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1246 Descri ...

  9. UVa 10622 (gcd 分解质因数) Perfect P-th Powers

    题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...

随机推荐

  1. 【原】简单shell练习(一)

    1.交互式脚本 #!/bin/bash read -p "Enter your name:" name #read提示用户输入 echo "hello $name, we ...

  2. linux下设置python3.x为默认版本

    rm /usr/bin/python ln -s /usr/local/bin/python3.x /usr/bin/python sybomlic 安装目录 系统目录

  3. manacher马拉车算法

    Manacher算法讲解 总有人喜欢搞事情,出字符串的题,直接卡掉了我的40分 I.适用范围 manacher算法解决的是字符串最长回文子串长度的问题. 关键词:最长 回文 子串 II.算法 1.纯暴 ...

  4. POJ - 2955 Brackets (区间DP)

    题目: 给出一个有括号的字符串,问这个字符串中能匹配的最长的子串的长度. 思路: 区间DP,首先枚举区间长度,然后在每一个长度中通过枚举这个区间的分割点来更新这个区间的最优解.还是做的少. 代码: / ...

  5. linux系统查看网络连接情况

    netstat命令状态说明: CLOSED                      没有使用这个套接字[netstat 无法显示closed状态] LISTEN 套接字正在监听连接[调用listen ...

  6. delphi GDI+ [1]

    摘抄自:万一的博客 安装头文件:http://www.cnblogs.com/del/archive/2008/06/06/1215319.html 目录 基本使用方法(绘制直线) 绘制一组直线 绘制 ...

  7. Mysql:零散记录

    limit用法 查询第4行记录 select * from tablename limit 3,1; limit 3,1:截取第3行加1行的数据 查询第6-15行 select * from tabl ...

  8. selenium的三种等待

    1. 强制等待 最简单粗暴,sleep(xx),不管你浏览器是否加载完了,程序都得等待xx秒,时间一到,再继续执行下面的代码,作为调试很有用,有时候也可以在代码里这样等待,不过不建议总用这种等待方式, ...

  9. maven运行tomcat6出现错误Exception starting filter encodingFilter怎么解决

    严重: Exception starting filter encodingFilterjava.lang.ClassCastException: org.springframework.web.fi ...

  10. C语言学习<输入输出函数,函数的调用>

    #include <stdio.h> /* 输入输出函数的学习 函数的调用 2017.05.25 soulsjie */ //输入连个数字求最大值 void main(){ int Max ...