Discription

A maze is represented by a tree (an undirected graph, where exactly one way exists between each pair of vertices). In the maze the entrance vertex and the exit vertex are chosen with some probability. The exit from the maze is sought by Deep First Search. If there are several possible ways to move, the move is chosen equiprobably. Consider the following pseudo-code:

DFS(x)
if x == exit vertex then
finish search
flag[x] <- TRUE
random shuffle the vertices' order in V(x) // here all permutations have equal probability to be chosen
for i <- 1 to length[V] do
if flag[V[i]] = FALSE then
count++;
DFS(y);
count++;

V(x) is the list vertices adjacent to x. The flag array is initially filled as FALSE. DFS initially starts with a parameter of an entrance vertex. When the search is finished, variable count will contain the number of moves.

Your task is to count the mathematical expectation of the number of moves one has to do to exit the maze.

Input

The first line determines the number of vertices in the graph n (1 ≤ n ≤ 105). The next n - 1 lines contain pairs of integers ai and bi, which show the existence of an edge between ai and bi vertices (1 ≤ ai, bi ≤ n). It is guaranteed that the given graph is a tree.

Next n lines contain pairs of non-negative numbers xi and yi, which represent the probability of choosing the i-th vertex as an entrance and exit correspondingly. The probabilities to choose vertex i as an entrance and an exit equal  and  correspondingly. The sum of all xi and the sum of all yi are positive and do not exceed 106.

Output

Print the expectation of the number of moves. The absolute or relative error should not exceed 10 - 9.

Example

Input
2
1 2
0 1
1 0
Output
1.00000000000000000000
Input
3
1 2
1 3
1 0
0 2
0 3
Output
2.00000000000000000000
Input
7
1 2
1 3
2 4
2 5
3 6
3 7
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Output
4.04081632653

Note

In the first sample the entrance vertex is always 1 and the exit vertex is always 2.

In the second sample the entrance vertex is always 1 and the exit vertex with the probability of 2/5 will be 2 of with the probability if 3/5 will be 3. The mathematical expectations for the exit vertices 2 and 3 will be equal (symmetrical cases). During the first move one can go to the exit vertex with the probability of 0.5 or to go to a vertex that's not the exit vertex with the probability of 0.5. In the first case the number of moves equals 1, in the second one it equals 3. The total mathematical expectation is counted as 2 / 5 × (1 × 0.5 + 3 × 0.5) + 3 / 5 × (1 × 0.5 + 3 × 0.5)

我们如果把终点T当成树根的话,那么再把S当作起点,路径长度的期望就是 树根T包含S那个儿子的子树大小。

为什么呢?

1.考虑如果一条边在S到T的路径上的话,那么是肯定要经过的,期望就是1;

2.如果一条边不在T到S的路径上,但却在T包含S那个子树里,那么它只有两种可能:被经过2次或者不经过。然后我们再强行带一波数,可以发现两者的概率是相等的(就是我们假设S和边上端点的LCA有p个儿子,那么走包含S那个子树的概率就是 1/p + (p-2)/p * 1/(p-1) +....  = 1/2)

而这两种边数之和(子树中所有边+T到那个儿子的边)正好就是T包含S那个子树的大小,所以我们直接DFS一遍,统计每个点作为终点(树根)的答案即可。

#include<bits/stdc++.h>
#define ll long long
const int maxn=100005;
#define D double
using namespace std;
int n,m,hd[maxn],to[maxn*2],ne[maxn*2],siz[maxn];
D per[maxn],ANS=0,S,T,s[maxn],t[maxn]; void dfs(int x,int fa){
siz[x]=1;
for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
dfs(to[i],x);
siz[x]+=siz[to[i]];
s[x]+=s[to[i]];
ANS+=t[x]*s[to[i]]*siz[to[i]];
}
ANS+=t[x]*(S-s[x])*(n-siz[x]);
} int main(){
scanf("%d",&n);
int uu,vv;
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
to[i]=vv,ne[i]=hd[uu],hd[uu]=i;
to[i+n]=uu,ne[i+n]=hd[vv],hd[vv]=i+n;
} for(int i=1;i<=n;i++){
scanf("%lf%lf",s+i,t+i);
S+=s[i],T+=t[i];
} dfs(1,1); printf("%.20lf\n",ANS/S/T);
return 0;
}

  

Codeforces 123 E Maze的更多相关文章

  1. Codeforces 197D - Infinite Maze

    197D - Infinite Maze 思路:bfs,如果一个点被搜到第二次,那么就是符合要求的. 用vis[i][j].x,vis[i][j].y表示i,j(i,j是取模过后的值)这个点第一次被搜 ...

  2. CodeForces 196B Infinite Maze

    Infinite Maze time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. Codeforces 377 A Maze【DFS】

    题意:给出n*m的矩阵,矩阵由'.'和'#'组成,再给出k,表示需要在'.'处加k堵墙,使得剩下的'.'仍然是连通的 先统计出这个矩阵里面总的点数'.'为sum 因为题目说了一定会有一个解,所以找到一 ...

  4. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  5. Codeforces 377A - Maze

    A. Maze 题目链接:http://codeforces.com/contest/377/problem/A time limit per test 2 seconds memory limit ...

  6. Codeforces Round #222 (Div. 1) A. Maze dfs

    A. Maze 题目连接: http://codeforces.com/contest/377/problem/A Description Pavel loves grid mazes. A grid ...

  7. CodeForces - 123E Maze

    http://codeforces.com/problemset/problem/123/E 题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.p ...

  8. Codeforces Round #222 (Div. 1) Maze —— dfs(连通块)

    题目链接:http://codeforces.com/problemset/problem/377/A 题解: 有tot个空格(输入时统计),把其中k个空格变为wall,问怎么变才能使得剩下的空格依然 ...

  9. [Codeforces 863C]1-2-3

    Description Ilya is working for the company that constructs robots. Ilya writes programs for enterta ...

随机推荐

  1. linux uptime-查看Linux系统负载信息

    更多linux 性能监测与优化 关注:linux命令大全 uptime命令能够打印系统总共运行了多长时间和系统的平均负载.uptime命令可以显示的信息显示依次为:现在时间.系统已经运行了多长时间.目 ...

  2. nginx常用功能配置

    一.规范优化nginx配置文件 nginx的主配置文件为nginx.conf,主配置文件包含的所有虚拟主机的子配置文件会统一放入extra目录中,虚拟主机的配置文件按照网站的域名或功能取名,例如www ...

  3. js的弹性运动

    弹性: 速度+=(目标点-当前值)/系数://系数大概可以选择6,7,8 速度*=摩擦系数://系数可以选择0.7,0.75,0.8 缓冲: 速度=(目标点-当前值)/系数: 速度取整:

  4. 使用VMware克隆出来的新虚拟机无法联网-问题解决记录

    背景: 使用VMware克隆出来的新虚拟机无法联网,重启网卡出现如下图提示: 继续输入#ifup ens33 提示: ens33: unknown interface: No such device ...

  5. iOS设置UINavigationBar 的样式

    为了方便演示,我用storyBoard建立了一个基本的导航栏 并在代码中获得了NavgationBar UINavigationBar *bar = self.navigationController ...

  6. 菜鸟的《Linux程序设计》学习—shell script

    1. 认识shell script shell script是利用shell的功能缩写的一个"程序",这个程序是使用纯文本文件,将一些shell的语法与命令(含外部命令)写在里面, ...

  7. linux 环境下bash脚本中找不到命令

    mr.sh: line 1: HADOOP_CMD: command not found mr.sh: line 4: INPUT_FILE_PATH: command not found mr.sh ...

  8. css3小代码

    1.三角 <!doctype html> <html lang="en"> <head> <meta charset="UTF- ...

  9. luogu3629 [APIO2010]巡逻

    创造一个环出来,可以让环上的边都只访问一次. 对于 \(k=1\),答案就是树的直径两边连起来. 倘若 \(k=2\),那就先按照 \(k=1\) 的求一遍,然后我们发现,如果第二条加的边构成的环和第 ...

  10. android 之 菜单

    android的菜单主要分三类:选项菜单(Options Menu).上下文菜单(Context Menu).子菜单(Submenu). 1 选项菜单和子菜单 一个Menu对象代表一个菜单,Menu中 ...