Discription

A maze is represented by a tree (an undirected graph, where exactly one way exists between each pair of vertices). In the maze the entrance vertex and the exit vertex are chosen with some probability. The exit from the maze is sought by Deep First Search. If there are several possible ways to move, the move is chosen equiprobably. Consider the following pseudo-code:

DFS(x)
if x == exit vertex then
finish search
flag[x] <- TRUE
random shuffle the vertices' order in V(x) // here all permutations have equal probability to be chosen
for i <- 1 to length[V] do
if flag[V[i]] = FALSE then
count++;
DFS(y);
count++;

V(x) is the list vertices adjacent to x. The flag array is initially filled as FALSE. DFS initially starts with a parameter of an entrance vertex. When the search is finished, variable count will contain the number of moves.

Your task is to count the mathematical expectation of the number of moves one has to do to exit the maze.

Input

The first line determines the number of vertices in the graph n (1 ≤ n ≤ 105). The next n - 1 lines contain pairs of integers ai and bi, which show the existence of an edge between ai and bi vertices (1 ≤ ai, bi ≤ n). It is guaranteed that the given graph is a tree.

Next n lines contain pairs of non-negative numbers xi and yi, which represent the probability of choosing the i-th vertex as an entrance and exit correspondingly. The probabilities to choose vertex i as an entrance and an exit equal  and  correspondingly. The sum of all xi and the sum of all yi are positive and do not exceed 106.

Output

Print the expectation of the number of moves. The absolute or relative error should not exceed 10 - 9.

Example

Input
2
1 2
0 1
1 0
Output
1.00000000000000000000
Input
3
1 2
1 3
1 0
0 2
0 3
Output
2.00000000000000000000
Input
7
1 2
1 3
2 4
2 5
3 6
3 7
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Output
4.04081632653

Note

In the first sample the entrance vertex is always 1 and the exit vertex is always 2.

In the second sample the entrance vertex is always 1 and the exit vertex with the probability of 2/5 will be 2 of with the probability if 3/5 will be 3. The mathematical expectations for the exit vertices 2 and 3 will be equal (symmetrical cases). During the first move one can go to the exit vertex with the probability of 0.5 or to go to a vertex that's not the exit vertex with the probability of 0.5. In the first case the number of moves equals 1, in the second one it equals 3. The total mathematical expectation is counted as 2 / 5 × (1 × 0.5 + 3 × 0.5) + 3 / 5 × (1 × 0.5 + 3 × 0.5)

我们如果把终点T当成树根的话,那么再把S当作起点,路径长度的期望就是 树根T包含S那个儿子的子树大小。

为什么呢?

1.考虑如果一条边在S到T的路径上的话,那么是肯定要经过的,期望就是1;

2.如果一条边不在T到S的路径上,但却在T包含S那个子树里,那么它只有两种可能:被经过2次或者不经过。然后我们再强行带一波数,可以发现两者的概率是相等的(就是我们假设S和边上端点的LCA有p个儿子,那么走包含S那个子树的概率就是 1/p + (p-2)/p * 1/(p-1) +....  = 1/2)

而这两种边数之和(子树中所有边+T到那个儿子的边)正好就是T包含S那个子树的大小,所以我们直接DFS一遍,统计每个点作为终点(树根)的答案即可。

#include<bits/stdc++.h>
#define ll long long
const int maxn=100005;
#define D double
using namespace std;
int n,m,hd[maxn],to[maxn*2],ne[maxn*2],siz[maxn];
D per[maxn],ANS=0,S,T,s[maxn],t[maxn]; void dfs(int x,int fa){
siz[x]=1;
for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
dfs(to[i],x);
siz[x]+=siz[to[i]];
s[x]+=s[to[i]];
ANS+=t[x]*s[to[i]]*siz[to[i]];
}
ANS+=t[x]*(S-s[x])*(n-siz[x]);
} int main(){
scanf("%d",&n);
int uu,vv;
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
to[i]=vv,ne[i]=hd[uu],hd[uu]=i;
to[i+n]=uu,ne[i+n]=hd[vv],hd[vv]=i+n;
} for(int i=1;i<=n;i++){
scanf("%lf%lf",s+i,t+i);
S+=s[i],T+=t[i];
} dfs(1,1); printf("%.20lf\n",ANS/S/T);
return 0;
}

  

Codeforces 123 E Maze的更多相关文章

  1. Codeforces 197D - Infinite Maze

    197D - Infinite Maze 思路:bfs,如果一个点被搜到第二次,那么就是符合要求的. 用vis[i][j].x,vis[i][j].y表示i,j(i,j是取模过后的值)这个点第一次被搜 ...

  2. CodeForces 196B Infinite Maze

    Infinite Maze time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. Codeforces 377 A Maze【DFS】

    题意:给出n*m的矩阵,矩阵由'.'和'#'组成,再给出k,表示需要在'.'处加k堵墙,使得剩下的'.'仍然是连通的 先统计出这个矩阵里面总的点数'.'为sum 因为题目说了一定会有一个解,所以找到一 ...

  4. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  5. Codeforces 377A - Maze

    A. Maze 题目链接:http://codeforces.com/contest/377/problem/A time limit per test 2 seconds memory limit ...

  6. Codeforces Round #222 (Div. 1) A. Maze dfs

    A. Maze 题目连接: http://codeforces.com/contest/377/problem/A Description Pavel loves grid mazes. A grid ...

  7. CodeForces - 123E Maze

    http://codeforces.com/problemset/problem/123/E 题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.p ...

  8. Codeforces Round #222 (Div. 1) Maze —— dfs(连通块)

    题目链接:http://codeforces.com/problemset/problem/377/A 题解: 有tot个空格(输入时统计),把其中k个空格变为wall,问怎么变才能使得剩下的空格依然 ...

  9. [Codeforces 863C]1-2-3

    Description Ilya is working for the company that constructs robots. Ilya writes programs for enterta ...

随机推荐

  1. Greenplum/Deepgreen(单机/伪分布)安装文档

    Greenplum/Deepgreen数据库安装(单机/伪分布) 首先去官网下载centos7:https://www.centos.org/download/,选择其中一个镜像下载即可,网上随意下载 ...

  2. 牛客练习赛40 C-小A与欧拉路

    求图中最短的欧拉路.题解:因为是一棵树,因此当从某一个节点遍历其子树的时候,如果还没有遍历完整个树,一定还需要再回到这个节点再去遍历其它子树,因此除了从起点到终点之间的路,其它路都被走了两次,而我们要 ...

  3. [图文][提供可行性脚本] CentOS 7 Fencing+Pacemaker三节点搭建高可用集群

    实验说明: 实验环境: 宿主机系统   :Fedora 28 WorkStation 虚拟机管理器 :Virt-Manager 1.5.1 虚拟机配置   :ha1  CentOS 7.2 1511 ...

  4. Web鼠标事件

    mousedown:鼠标按下 mouseup:鼠标抬起 mousemove:鼠标移动 mouseout:在父元素上绑定该事件,当鼠标从父元素或者从子元素上离开时都会触发该事件 mouseleave:和 ...

  5. node.js----服务器http

    请求网址过程: 1.用户通过浏览器发送一个http的请求到指定的主机 2.服务器接收到该请求,对该请求进行分析和处理 3.服务器处理完成以后,返回对应的数据到用户机器 4.浏览器接收服务器返回的数据, ...

  6. 朋友去面试Python工程师,又带回来几道基础题,Python面试题No10

    第1题: print 调用 Python 中底层的什么方法? print print() 用 sys.stdout.write() 实现 import sys print('hello') sys.s ...

  7. 小数据池 is 和 ==的区别

    小数据池 一.小数据池 1)代码块 python程序是由代码块构成的,一个代码块的文本作为pythont程序执行的单元 官方文档: A Python program is constructed fr ...

  8. (转)iOS 常用宏定义

    #ifndef MacroDefinition_h #define MacroDefinition_h   //-------------------获取设备大小------------------- ...

  9. c#笔记2019-01-06

    using System; using System.Collections.Generic; using System.Linq; using System.Text; /*2019-01-06C# ...

  10. Course Machine Learning Note

    Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...