[BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527
首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们可以把式子整理成这个样子再套上FFT就成功了。
$$E_i=\sum_{j<i}\frac{q_j}{(j-i)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}$$
$$E_i=\sum_{j=0}^{i-1}\frac{q_j}{(j-i)^2}^2-\sum_{j=0}^{n-i-1}\frac{q_{n-j}}{(n-i-j)^2}$$
令$f(i)=q_i$,$g(i)=\frac{1}{i^2}$,$t(i)=q_{n-i}$,则有
$$E_i=\sum_{j=0}^{i-1}f(i)g(i-j)-\sum_{j=0}^{n-i-1}t(j)g(n-i-j)$$
因为$j$无法取到$i$或者$n-i$,所以令$g(0)=0$来消除最后一项的影响。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const double pi=acos(-1.0);
struct complex{
double r,i;
complex (double _r=,double _i=){
r=_r,i=_i;
}
complex operator + (const complex &_){
return complex(r+_.r,i+_.i);
}
complex operator - (const complex &_){
return complex(r-_.r,i-_.i);
}
complex operator * (const complex &_){
return complex(r*_.r-i*_.i,r*_.i+_.r*i);
}
};
void reverse(complex y[],int len){
for(int i=,j=len>>,k;i+<len;i++){
if(i<j) swap(y[i],y[j]);
k=len>>;
while(j>=k){
j-=k;
k>>=;
}
if(j<k) j+=k;
}
}
void FFT(complex y[],int len,int on){
reverse(y,len);
for(int h=;h<=len;h<<=){
complex wn(cos(-on**pi/h),sin(-on**pi/h));
for(int j=;j<len;j+=h){
complex w(,);
for(int k=j;k<j+(h>>);k++){
complex u=y[k],t=w*y[k+(h>>)];
y[k]=u+t;
y[k+(h>>)]=u-t;
w=w*wn;
}
}
}
if(on==-) for(int i=;i<len;i++) y[i].r/=len;
}
double q[],ans[];
complex a[],b[],c[];
int main(){
int n,len=;
scanf("%d",&n);
while(len<n) len<<=;len<<=;
for(int i=;i<n;i++) scanf("%lf",&q[i]);
for(int i=;i<n;i++) a[i]=complex(q[i],);
for(int i=;i<n;i++) b[i]=complex(1.0/i/i,);
for(int i=n;i<len;i++) a[i]=b[i]=complex();
b[]=complex();
FFT(a,len,);
FFT(b,len,);
for(int i=;i<len;i++) c[i]=a[i]*b[i];
FFT(c,len,-);
for(int i=;i<n;i++) ans[i]=c[i].r;
for(int i=;i<n;i++) a[i]=complex(q[n-i-],);
for(int i=;i<n;i++) b[i]=complex(1.0/i/i,);
for(int i=n;i<len;i++) a[i]=b[i]=complex();
b[]=complex();
FFT(a,len,);
FFT(b,len,);
for(int i=;i<len;i++) c[i]=a[i]*b[i];
FFT(c,len,-);
for(int i=;i<n;i++) ans[i]-=c[n-i-].r;
for(int i=;i<n;i++) printf("%.3lf\n",ans[i]);
return ;
}
[BZOJ3527][ZJOI2014]力 FFT+数学的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- 【BZOJ-3527】力 FFT
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1544 Solved: 89 ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
随机推荐
- maven配置本地仓库和国内镜像仓库,解决国内访问国外中央仓库速度过慢问题
Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具. 1.配置本地仓库 打开conf文件夹下面的setting.xml文件 红色方框为配置本地仓 ...
- codeforces 696B B. Puzzles(树形dp+概率)
题目链接: B. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- SPOJ:Robot(数学期望)
There is a robot on the 2D plane. Robot initially standing on the position (0, 0). Robot can make a ...
- iOS 开发图片资源选择png格式还是jpg格式
对于iOS本地应用程序来说最简单的答案就是始终使用PNG,除非你有非常非常好的理由不用它. 当iOS应用构建的时候,Xcode会通过一种方式优化.png文件而不会优化其它文件格式.它优化得相当的好 他 ...
- [angularJS]ng-hide|ng-show切换
<div class="row ng-scope"> <div class="col-lg-12"> <h1 class=&quo ...
- web安全之XSS攻击原理及防范
阅读目录 一:什么是XSS攻击? 二:反射型XSS 三:存储型XSS 四:DOM-based型XSS 五:SQL注入 六:XSS如何防范? 1. cookie安全策略 2. X-XSS-Protect ...
- lightoj1079【背包】
题意: 哈利波特抢银行... 给出n个银行,每个银行有a[i]百万和b[i]的风险.然后再给一个风险值P,不能超过P. 思路: 如果告诉你概率的小数的位数,可能这个就会不一样了... 慨率的计算,风险 ...
- 【POJ - 3190 】Stall Reservations(贪心+优先队列)
Stall Reservations 原文是English,这里直接上中文吧 Descriptions: 这里有N只 (1 <= N <= 50,000) 挑剔的奶牛! 他们如此挑剔以致于 ...
- Jquery | 基础 | 导航条在项目中的应用
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)
题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...