题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527

首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们可以把式子整理成这个样子再套上FFT就成功了。

$$E_i=\sum_{j<i}\frac{q_j}{(j-i)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}$$

$$E_i=\sum_{j=0}^{i-1}\frac{q_j}{(j-i)^2}^2-\sum_{j=0}^{n-i-1}\frac{q_{n-j}}{(n-i-j)^2}$$

令$f(i)=q_i$,$g(i)=\frac{1}{i^2}$,$t(i)=q_{n-i}$,则有

$$E_i=\sum_{j=0}^{i-1}f(i)g(i-j)-\sum_{j=0}^{n-i-1}t(j)g(n-i-j)$$

因为$j$无法取到$i$或者$n-i$,所以令$g(0)=0$来消除最后一项的影响。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const double pi=acos(-1.0);
struct complex{
double r,i;
complex (double _r=,double _i=){
r=_r,i=_i;
}
complex operator + (const complex &_){
return complex(r+_.r,i+_.i);
}
complex operator - (const complex &_){
return complex(r-_.r,i-_.i);
}
complex operator * (const complex &_){
return complex(r*_.r-i*_.i,r*_.i+_.r*i);
}
};
void reverse(complex y[],int len){
for(int i=,j=len>>,k;i+<len;i++){
if(i<j) swap(y[i],y[j]);
k=len>>;
while(j>=k){
j-=k;
k>>=;
}
if(j<k) j+=k;
}
}
void FFT(complex y[],int len,int on){
reverse(y,len);
for(int h=;h<=len;h<<=){
complex wn(cos(-on**pi/h),sin(-on**pi/h));
for(int j=;j<len;j+=h){
complex w(,);
for(int k=j;k<j+(h>>);k++){
complex u=y[k],t=w*y[k+(h>>)];
y[k]=u+t;
y[k+(h>>)]=u-t;
w=w*wn;
}
}
}
if(on==-) for(int i=;i<len;i++) y[i].r/=len;
}
double q[],ans[];
complex a[],b[],c[];
int main(){
int n,len=;
scanf("%d",&n);
while(len<n) len<<=;len<<=;
for(int i=;i<n;i++) scanf("%lf",&q[i]);
for(int i=;i<n;i++) a[i]=complex(q[i],);
for(int i=;i<n;i++) b[i]=complex(1.0/i/i,);
for(int i=n;i<len;i++) a[i]=b[i]=complex();
b[]=complex();
FFT(a,len,);
FFT(b,len,);
for(int i=;i<len;i++) c[i]=a[i]*b[i];
FFT(c,len,-);
for(int i=;i<n;i++) ans[i]=c[i].r;
for(int i=;i<n;i++) a[i]=complex(q[n-i-],);
for(int i=;i<n;i++) b[i]=complex(1.0/i/i,);
for(int i=n;i<len;i++) a[i]=b[i]=complex();
b[]=complex();
FFT(a,len,);
FFT(b,len,);
for(int i=;i<len;i++) c[i]=a[i]*b[i];
FFT(c,len,-);
for(int i=;i<n;i++) ans[i]-=c[n-i-].r;
for(int i=;i<n;i++) printf("%.3lf\n",ans[i]);
return ;
}

[BZOJ3527][ZJOI2014]力 FFT+数学的更多相关文章

  1. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  2. BZOJ3527[Zjoi2014]力——FFT

    题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...

  3. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

  4. 【BZOJ-3527】力 FFT

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 89 ...

  5. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  6. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  7. 【bzoj3527】[Zjoi2014]力 FFT

    2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...

  8. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  9. 2019.02.28 bzoj3527: [Zjoi2014]力(fft)

    传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...

随机推荐

  1. i2c_set_clientdata函数【转】

    本文转载自‘:http://blog.csdn.net/jk198310/article/details/43738367 在i2c驱动中有很多函数和数据结构,很多一时难以理解,所以写下本文共同学习. ...

  2. HDU3667 Transportation —— 最小费用流(费用与流量平方成正比)

    题目链接:https://vjudge.net/problem/HDU-3667 Transportation Time Limit: 2000/1000 MS (Java/Others)    Me ...

  3. html5--6-6 CSS选择器3

    html5--6-6 CSS选择器3 实例 学习要点 掌握常用的CSS选择器 了解不太常用的CSS选择器 什么是选择器 当我们定义一条样式时候,这条样式会作用于网页当中的某些元素,所谓选择器就是样式作 ...

  4. Oracle:手工建库

    今天学习了小布老师的手工建库视频,自己也做了一遍,下面是创建过程记录: 本地环境oracle10.2.0.1 一.前期准备工作 1.设置环境变量 [oracle@app dbs]$ vi bbk.en ...

  5. windows下运行swoole搭建环境

    swoole windows环境搭建 swoole框架是一个很神奇很厉害的框架,它弥补了PHP的本身的一些不足之处.其实swoole确切的说是一个使用C语言编写的PHP扩展,并且这个扩展不能够在win ...

  6. OpenCV2.4.13+VS2012开发环境配置

    1.下载和安装OpenCV SDK 在OpenCV官网的下载页面: http://opencv.org/downloads.html   找到对应OpenCV for Windows版本下载.目前(2 ...

  7. Ubuntu:Could not get lock /var/lib/dpkg/lock

    在ubuntu上使用apt-get时,碰过如下问题: 看意思是上一次使用apt-get时异常退出了,锁住了,google了下解决方案如下: 1.先判断是否有apt-get进程在跑,同一时刻只能有一个a ...

  8. 相对定位relative与绝对定位absolute

    relative:相对定位,并没有脱离原来文档流,依然在原来的位置上,可以通过设置left,top,来设置自己的偏移量,但是它依然占据自己原来的位置,偏移的位置会遮盖其他的元素 absolute:绝对 ...

  9. relative和absolute

    relative 相对定位 1. 幻影瞬移 absolute属性也有瞬移技能,不同之处在于:absolute属性以天空或其他外界限制计算瞬移位置:而relative属性由于是凡人肉体,偏移能力有限,只 ...

  10. A. Transformation: from A to B

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...