一、暴力简述

甩链接.jpeg

首先我们不难看出,这道题————并不是一道多难的题,因为显然,第一眼看题目时便很容易地想到暴力如何打:枚举每一种订单,然后针对每一种订单,对区间内的每一天进行修改(做减法),直到某一份订单使得某一天剩下的教室数量为负数,即可得出结果。

先小小的评析一下吧:凡是能打出几近正解的暴力题,都不是难题!(蒟蒻可以骗到50+的不就是水题吗qwq)但是,显然枚举形式的暴力会很慢,期望的时间复杂度约为

O(m \times n)O(m×n),

可能会更快一些(但没卵用qwq

二、思想详述

让我们开动脑筋想一下:每张订单其实就可以看作是一个区间(操作),左右区间分别为开始时间和结束时间,所以这不就是一个区间操作吗——首选线段tree啦!但是我在这里并不打算介绍线段树,因为虽然线段tree操作方便、复杂度低,但是——————我不会写啊qwq!(逃

并且总感觉你考试的时候撸一个线段树模板的时间完全可以多打两个暴力啊qwq(虽然暴力也不一定对

所以,选择引入一种好理解、好实现的算法:差分数组

在介绍差分之前,需要介绍前缀和思想

(qwq此处当然只会讲一维线性的前缀和啦)

我们有一组数(个数小于等于一千万),并且有一大堆询问——给定区间l、r,求l、r之间所有数之和(询问个数小于等于一千万)

此处暴力肯定不行啊(O(NQlength)),那么我们来观察前缀和是怎么做的:用sum[i]来存储前i个数的和,然后用sum[r]-sum[l-1]来表示l~r之间所有数的和。(l-1原因是l~r只看要包含l)而sum数组便可以通过简单的递推求出来

代码核心:

for(int i=;i<=n;i++)
{cin>>a[i];sum[i]=sum[i-]+a[i];}
for(int i=;i<=q;i++)
{cin>>l>>r;cout<<sum[r]-sum[l-]<<" ";}

而所谓的差分数组,即是前缀和数组的逆运算:

我们给定前i个数相邻两个数的差(1<=i<=n),求每一项a[i](1<=i<=n)。

此时无非就是用作差的方式求得每一项,此时我们可以有一个作差数组cnt,cnt[i]用于记录a[i]-a[i-1],然后对于每一项a[i],我们可以递推出来:

for(int i=;i<=n;i++)
{cin>>diff[i];a[i]=diff[i]+a[i-];}
for(int i=;i<=n;i++)
{cout<<a[i];}

到这儿,我们可以看出来,前缀和是用元数据求元与元之间的并集关系,而差分则是根据元与元之间的逻辑关系求元数据,是互逆思想(qwq但是有时元数据和关系数据不是很好辨别或者产生角色反演啊)

但是,理解了前缀和&差分,并不代表肯定能做到模板题:毕竟,思想只能是辅助工具啊

三、关于答案二分

一般来说,二分是个很有用的优化途径,因为这样会直接导致减半运算,而对于能否二分,有一个界定标准:状态的决策过程或者序列是否满足单调性或者可以局部舍弃性。 而在这个题里,因为如果前一份订单都不满足,那么之后的所有订单都不用继续考虑;而如果后一份订单都满足,那么之前的所有订单一定都可以满足,符合局部舍弃性,所以可以二分订单数量。

四、终于要bb正解了!

首先,要明白如为什么要用区间差分而不是区间前缀和:因为这个题每次操作针对的对象都是原本题目中给的元数据,而不是让求某个关系,所以采用差分。

其次,要知道差分会起到怎样的作用:因为diff数组决定着每个元数据的变化大小、趋势,所以,当我们想要针对区间操作时,钱可以转化成对diff数组操作:

cnt[l[i]]+=d[i];
cnt[r[i]+1]-=d[i];//d[i]是指每天要借的教室数

因为后面的元数据都由之前的diff数组推导出来,所以改变diff[i]就相当于改变i之后的每一个值,并通过重新减去改变的量,达到操作区间的目的。

then,我们需要想明白策略:从第一份订单开始枚举,直到无法满足或者全枚举完结束。

最后,一点提示,我下面的标程是通过比大小来判断是否满足,而不是作差判负数————能不出负数就别出负数,否则容易基佬紫(re)/手动滑稽

贴标程:

#include <bits/stdc++.h>

using namespace std;

#define INF 0x3f3f3f3f
#define MAXN 1000100
#define MAXM 5010 inline int read()
{
int x = ,ff = ;char ch = getchar();
while(!isdigit(ch))
{
if(ch == '-') ff = -;
ch = getchar();
}
while(isdigit(ch))
{
x = (x << ) + (x << ) + (ch ^ );
ch = getchar();
}
return x * ff;
} int a,b,tot = ,day[MAXN],d[MAXN],s[MAXN],t[MAXN],ans[MAXN],cnt[MAXN];
bool pd(int x)
{
memset(cnt,,sizeof(cnt));
for(int i = ;i <= x;++i)
{
cnt[s[i]] += d[i];
cnt[t[i] + ] -= d[i];
}
for(int i = ;i <= a;++i)
{
ans[i] = ans[i - ] + cnt[i];
if(ans[i] > day[i]) return false;
}
return true;
} int main()
{
a = read(); b = read();
for(int i = ;i <= a;++i)
day[i] = read();
for(int i = ;i <= b;++i)
{
d[i] = read();
s[i] = read();
t[i] = read();
}
if(pd(b)) {printf("");return ;}
int l = ,r = b;
while(l < r)
{
int mid = (l + r) >> ;
if(pd(mid)) l = mid + ;
else r = mid;
}
printf("-1\n%d\n",l);
system("PAUSE");
return ;
}

noip 2012 Day2 T2 借教室的更多相关文章

  1. NOIP2012 DAY2 T2借教室

    题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然 ...

  2. NOIP2012提高组day2 T2借教室

    这题骗分可以骗到满分(可能是数据不太强给强行过去了) 这道题如果是按照题意去模拟用循环去修改区间的话只有45分,正解是二分+差分数组,骗分也是差分数组但是没有使用二分,时间复杂度在最坏的情况下是O(n ...

  3. NOIP2012 D2 T2借教室

    先上题目 题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息 ...

  4. NOIP 2012 Day2

    tags: 扩展欧几里得 二分答案 查分 倍增 二分答案 贪心 NOIP categories: 信息学竞赛 总结 同余方程 借教室 疫情控制 同余方程 Solution 首先同余式可以转化为等式. ...

  5. NOIP2012 D2 T2 借教室 线段树 OR 二分法

    题目描述: 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自 ...

  6. LUGOU 3959 宝藏 (noip 2017 day2 T2)

    传送门 解题思路 去年noip现在拿来写..思路还是听清楚的,记忆化搜索,f[S]表示现在选了集合S时的最小代价,dis[i]表示达到最优时i这个点的深度.f[S| (1< < i-1) ...

  7. Codevs 1217 借教室 2012年NOIP全国联赛提高组

    1217 借教室 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在大学期间,经常需要租借教 ...

  8. NOIp 2012 #2 借教室 Label:区间修改线段树

    题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然 ...

  9. NOIP 2012 Day2T2 借教室题解

    NOIP 2012 Day2T2 借教室题解 题目传送门:http://codevs.cn/problem/1217/ 题目描述 Description 在大学期间,经常需要租借教室.大到院系举办活动 ...

随机推荐

  1. HDU 5289 Assignment(多校联合第一场1002)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. Linux在本地使用yum安装软件(转)

    经常遇到有的linux服务器由于特殊原因,不能连接外网,但是经常需要安装一些软件,尤其是在编译一些包的时候经常由于没有安装一些依存包而报的各种各样的错误,当你找到依存的rpm包去安装的时候,又提示你有 ...

  3. VirtualBox 虚拟Ubuntu系统与主机互ping

    互ping的前提是主机和虚拟机的ip地址在同一波段[eg:主机为:192.168.1.10虚拟Linux:192.168.1.11] 1.设置主机ip:                         ...

  4. sql注入攻防 以php+mysql为例

    随着Web应用的高速发展和技术的不断成熟,对Web开发相关职位的需求量也越来越大,越来越多的人加入了Web开发的行列.但是由于程序员的水平参差不齐或是安全意识太低,很多程序员在编写代码时仅考虑了功能上 ...

  5. Linux和Windows设备驱动架构比较

    毕业后一直在学操作系统, 有时候觉得什么都懂了,有时候又觉得好像什么都不懂,但总体来说自认为对操作系统实现机制的了解比周围的人还是要多一些.去年曾花了几个星期的晚上时间断断续续翻译了这篇对Linux和 ...

  6. C++,Base64编解码字符串或文件

    参考链接:在C语言中使用libb64进行Base64编解码 GitHub地址:https://github.com/BuYishi/cpp_base64_demo base64_demo.cpp #i ...

  7. node-orm2

    最近应老大要求,对orm2进行再一步封装,所以记录下封装和使用心得(文中数据库:mysql). 数据库连接 var orm = require("orm"); orm.connec ...

  8. 阿里Java编程规范 学习笔记

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...

  9. VC FTP服务器程序分析(三)

    CControlSocket类的分析,CControlSocket类的内容比较多,为什么呢.因为通信控制命令的传输全部在这里,通信协议的多样也导致了协议解析的多样. 1.OnReceive  其大致说 ...

  10. DDD战略设计相关核心概念的理解

    前言 本文想再讨论一下关于领域.业务.业务模型.解决方案.BC.领域模型.微服务这些概念的含义和关系.初衷是我发现现在DDD领域建模以及解决方案落地过程中,常常对这些概念理解不清楚或者有歧义,导致我们 ...