Codeforces917D. Stranger Trees
$n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$。
对这种“在整体中求具有某些特性的部分”,可以通过把“特性”强行复制加入“整体”来考察新的整体与部分的关系。
说人话,在这里是要求完全图中与给定树有若干同样边的生成树,那尝试把这棵树复制一份进完全图再看生成树。可以发现,这样之后,新的完全图的生成树个数就是
$\sum_{i=0}^{n-1}2^i*[number \ \ of \ \ trees \ \ which \ \ have \ \ i \ \ common \ \ edges \ \ with \ \ the \ \ original \ \ tree]$
因为有$i$条公共边的话他在这张图里面这些公共边都有两种选择。类似得可以发现原完全图的生成树个数实际上就是所有要求的系数之和,原完全图相当于复制0次。依次类推,设$F(x)$为把树边复制$x-1$次得到完全图的生成树个数,那么
$F(x)=\sum_{i=0}^{n-1}x^i*[number \ \ of \ \ trees \ \ which \ \ have \ \ i \ \ common \ \ edges \ \ with \ \ the \ \ original \ \ tree]$
现在要求这些系数,但我们知道了n个自变量$x$和他们对应的$F(x)$(用无向图生成树计数--矩阵树定理),可以用多项式插值求出系数。我只会高斯消元求插值,因此复杂度$n^3+n^4$。
//#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<map>
#include<math.h>
//#include<time.h>
//#include<complex>
#include<algorithm>
using namespace std; int n,m;
#define maxn 111
const int mod=1e9+;
int ji[maxn][maxn],duo[maxn][maxn]; int powmod(int a,int b)
{
int ans=;
while (b)
{
if (b&) ans=1ll*ans*a%mod;
a=1ll*a*a%mod; b>>=;
}
return ans;
} int hh(int n)
{
int ans=;
for (int i=;i<=n;i++)
{
if (ji[i][i]==) for (int j=i+;j<=n;j++) if (ji[j][i])
{
ans=ans==?mod-:;
for (int k=i;k<=n;k++) {int t=ji[i][k]; ji[i][k]=ji[j][k]; ji[j][k]=t;}
break;
}
int pp=powmod(ji[i][i],mod-);
for (int j=i+;j<=n;j++)
{
int now=1ll*ji[j][i]*pp%mod;
for (int k=i;k<=n;k++) ji[j][k]-=1ll*ji[i][k]*now%mod,ji[j][k]+=ji[j][k]<?mod:;
}
}
for (int i=;i<=n;i++) ans=1ll*ans*ji[i][i]%mod;
return ans;
} void gauss(int n)
{
for (int i=;i<=n;i++)
{
if (duo[i][i]==) for (int j=i+;j<=n;j++) if (duo[j][i])
{
for (int k=i;k<=n+;k++) {int t=duo[i][k]; duo[i][k]=duo[j][k]; duo[j][k]=t;}
break;
}
int pp=powmod(duo[i][i],mod-);
for (int j=i+;j<=n;j++)
{
int now=1ll*duo[j][i]*pp%mod;
for (int k=i;k<=n+;k++) duo[j][k]-=1ll*duo[i][k]*now%mod,duo[j][k]+=duo[j][k]<?mod:;
}
}
for (int i=n;i;i--)
{
for (int j=n;j>i;j--) duo[i][n+]-=1ll*duo[i][j]*duo[j][n+]%mod,duo[i][n+]+=duo[i][n+]<?mod:;
duo[i][n+]=1ll*duo[i][n+]*powmod(duo[i][i],mod-)%mod;
}
} int mp[maxn][maxn],du[maxn],base[maxn][maxn];
int main()
{
scanf("%d",&n);
for (int i=,x,y;i<n;i++)
{
scanf("%d%d",&x,&y);
mp[x][y]++; mp[y][x]++; du[x]++; du[y]++;
}
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
if (i==j) base[i][j]=n-;
else base[i][j]=mod-;
}
for (int i=;i<n;i++)
{
memcpy(ji,base,sizeof(ji));
for (int j=;j<=n;j++) ji[j][j]+=du[j]*i;
for (int j=;j<=n;j++)
for (int k=;k<=n;k++)
if (j!=k && mp[j][k]) ji[j][k]-=i;
duo[i+][n+]=hh(n-);
for (int j=,tmp=;j<=n;j++,tmp=1ll*tmp*(i+)%mod) duo[i+][j]=tmp;
}
gauss(n);
for (int i=;i<=n;i++) printf("%d ",duo[i][n+]);
return ;
}
Codeforces917D. Stranger Trees的更多相关文章
- 题解-Codeforces917D Stranger Trees
Problem \(\mathrm{Codeforces~917D}\) 题意概要:一棵 \(n\) 个节点的无向树.问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对 ...
- CF917D Stranger Trees
CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...
- 【CF917D】Stranger Trees 树形DP+Prufer序列
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...
- codeforces 917D Stranger Trees
题目链接 正解:矩阵树定理+拉格朗日插值. 一下午就搞了这一道题,看鬼畜英文题解看了好久.. 首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法 ...
- [CF917D]Stranger Trees[矩阵树定理+解线性方程组]
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...
- 【CF917D】Stranger Trees
题目 看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了 众所周知矩阵树求得是这个 \[\sum_{T}\prod_{e\in T}w_e\] 而我们现在的这个问题有些鬼畜了, ...
- CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...
- CF917D Stranger Trees【矩阵树定理,高斯消元】
题目链接:洛谷 题目大意:给定一个$n$个节点的树$T$,令$ans_k=\sum_{T'}[|T\cap T'|=k]$,即有$k$条边重合.输出$ans_0,ans_1,\ldots,ans_{n ...
- 题解 CF917D 【Stranger Trees】
生成树计数问题用矩阵树定理来考虑. 矩阵树定理求得的为\(\sum\limits_T\prod\limits_{e\in T}v_e\),也就是所有生成树的边权积的和. 这题边是不带权的,应用矩阵树定 ...
随机推荐
- 【学习笔记】深入理解js原型和闭包(1)—— 一切都是对象
“一切都是对象”这句话的重点在于如何去理解“对象”这个概念. ——当然,也不是所有的都是对象,值类型就不是对象. 首先咱们还是先看看javascript中一个常用的运算符——typeof.typeof ...
- 【学习笔记】using namespace std 的作用
C++编程时几乎每次都敲上using namespace std;但这行代码究竟有什么作用呢? C++标准程序库中的所有标识符都被定义于一个名为std的namespace中. 早些的编码将标准库功能定 ...
- canvas画饼图
<style> body { background: black; text-align: center; } #cans { background: white; } ...
- FPGA内部RAM的初始化
Altera的RAM初始化文件格式是mif和hex. QuartusII自带的RAM初始化工具很方便产生初始化文件. Xilinx的RAM初始化文件格式是coe, 在vivado中软件会将coe文件变 ...
- jmeter+ant+jenkins
前提:需要先配置下面两个环境,严格按照本人的配置去配,要不然后面你会看不懂 (1)ant+jmeter集成:http://blog.csdn.net/qq_23101033/article/detai ...
- core 中使用 nlog
引包 代码 public void Configure(IApplicationBuilder app, IHostingEnvironment env,ILoggerFactory logFac) ...
- Java集合(六)--ArrayList、LinkedList和Vector对比
在前两篇博客,学习了ArrayList和LinkedList的源码,地址在这: Java集合(五)--LinkedList源码解读 Java集合(四)--基于JDK1.8的ArrayList源码解读 ...
- 这就是那个feature map256 256向量
http://blog.csdn.net/XZZPPP/article/details/51582810 在这个特征图上使用3*3的卷积核(滑动窗口)与特征图进行卷积,那么这个3*3的区域卷积后可以获 ...
- PHP09 字符串和正则表达式
学习要点 字符串处理简介 常用的字符串输出函数 常用的字符串格式化函数 字符串比较函数 正则表达式简介 正则表达式语法规则 与perl兼容的正则表达式函数 字符串处理介绍 Web开发中字符串处理 ...
- 《3+1团队》【Alpha】Scrum meeting 2
项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...