HDU 6333 莫队+组合数
Problem B. Harvest of Apples
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2397 Accepted Submission(s): 934
Count the number of ways to pick at most m apples.
Each test case consists of one line with two integers n,m (1≤m≤n≤105).
解析 不难发现S(n,m)也满足左上角加右上角(杨辉三角) 所以根据公式可以O(1)得到S(n-1,m),S(n+1,m),S(n,m-1),S(n,m+1) 可以看做区间的转移 从而套用莫队实现求解

AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan prllf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
typedef long long ll;
const ll maxn=1e5+,inf=0x3f3f3f3f;
const ll mod=1e9+;
ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
ll fac[maxn],inv[maxn],ans[maxn];
ll chunk;
struct node
{
ll l,r,id,chunk;
}q[maxn];
bool cmp(node a,node b)
{
if(a.chunk!=b.chunk)
return a.l<b.l;
return a.r<b.r;
}
void init()
{
fac[]=fac[]=;
inv[]=inv[]=;
for(ll i=;i<maxn;i++)
{
fac[i]=fac[i-]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
for(ll i=;i<maxn;i++) //不可以写成一个for inv还会用到
inv[i]=inv[i-]*inv[i]%mod; //可以再开一个数组 写成一个for
}
ll C(ll x,ll y)
{
if(y>x) return ;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
init();//预处理组合数逆元 从而O(1)获得组合数 实现转移
ll t;
chunk=sqrt(maxn);
scanf("%lld",&t);
for(ll i=;i<=t;i++)
{
ll n,m;
scanf("%lld%lld",&n,&m);
q[i]=node{n,m,i,n/chunk+};
}
sort(q+,q++t,cmp);
ll l=,r=,res=;
for(ll i=;i<=t;i++)
{
while(l<q[i].l)
{
res=(res*%mod-C(l,r)+mod)%mod;
l++;
}
while(l>q[i].l)
{
l--;
res=(res+C(l,r))%mod*inv[]%mod;
}
while(r>q[i].r)
{
res=(res-C(l,r)+mod)%mod;
r--;
}
while(r<q[i].r)
{
r++;
res=(res+C(l,r))%mod;
}
ans[q[i].id]=res;
}
for(ll i=;i<=t;i++)
printf("%lld\n",ans[i]);
return ;
}
HDU 6333 莫队+组合数的更多相关文章
- Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元
题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...
- Hdu 5213-Lucky 莫队,容斥原理,分块
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5213 Lucky Time Limit: 6000/3000 MS (Java/Others) Me ...
- HDU6333 莫队+组合数
题目大意: 给定n m 在n个数中最多选择m个的所有方案 #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3 ...
- HDU 4358 莫队算法+dfs序+离散化
Boring counting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 98304/98304 K (Java/Others)T ...
- HDU 4638 (莫队)
题目链接:Problem - 4638 做了两天莫队和分块,留个模板吧. 当插入r的时候,设arr[r]代表r的位置的数字,判断vis[arr[r-1]]和vis[arr[r+1]]是否访问过,如果两 ...
- HDU 4638 莫队算法
Group Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 5145(莫队算法+逆元)
NPY and girls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 联赛模拟测试12 C. sum 莫队+组合数
题目描述 分析 \(80\) 分的暴力都打出来了还是没有想到莫队 首先对于 \(s[n][m]\) 我们可以很快地由它推到 \(s[n][m+1]\) 和 \(s[n][m-1]\) 即 \(s[n] ...
- HDU 6534 莫队+ 树状数组
题意及思路:https://blog.csdn.net/tianyizhicheng/article/details/90369491 代码: #include <bits/stdc++.h&g ...
随机推荐
- iOS infoq资料架构设计漫谈
http://www.infoq.com/cn/ios/?utm_source=infoq&utm_medium=header_graybar&utm_campaign=topic_c ...
- NestedScrollView嵌套RecycleView发生的小问题
1.解决方法:嵌套滑动不激活. recycleView.setNestedScrollingEnable(false); 这样做有个弊端,RecycleView的item会一次性加载完,不管是否显示, ...
- win7系统 windows update 总是更新失败解决方法:
win7系统 windows update 总是更新失败解决方法: 右键单击桌面“计算机”选择“管理“. 进到“计算机管理“窗口后,展开”服务和应用程序“并双击”服务“,在窗口右侧按照名称找到”Win ...
- 分类IP地址(A、B、C类)的指派范围、一般不使用的特殊IP地址
分类IP地址(A.B.C类)的指派范围.一般不使用的特殊IP地址 A类地址:0开头,8位网络号 B类地址:10开头,16位网络号 C类地址:110开头,24位网络号 D类地址:1110开头,多播地址 ...
- CocosCreator工程内的命名
命名结构总体的命名结构遵循以下格式 前缀-内容-尾缀 - 前缀:用来定义node的属性- 内容:node的名字- 尾缀:序列或状态1231. 前缀说明:在开始的时候定义/声明这个节点的属性前缀可以是一 ...
- Python 中列表、元祖、字典
1.元祖: 对象有序排列,通过索引读取读取, 对象不可变,可以是数字.字符串.列表.字典.其他元祖 2.列表: 对象有序排列,通过索引读取读取, 对象是可变的,可以是数字.字符串.元祖.其他列表.字典 ...
- SVM-支持向量机 学习 1
参考 https://zhuanlan.zhihu.com/p/42334376 https://blog.csdn.net/liugan528/article/details/79448379 ht ...
- 数据库sql语句limit区别
注意:并非所有的数据库系统都支持 SELECT TOP 语句. MySQL 支持 LIMIT 语句来选取指定的条数数据, Oracle 可以使用 ROWNUM 来选取. SQL Server / MS ...
- 欧拉函数 || LightOJ 1370 Bi-shoe and Phi-shoe
给出x,求最小的y使y的欧拉函数大于等于x *解法:i).求出1e6之内的数的欧拉函数,遍历找 ii).求比x大的第一个质数——因为每个质数n的欧拉函数都是n-1 wa一次是因 ...
- java使用数据库连接池
连接池的实现方式是首先使用JNDI(JavaTM Naming and Directory Interface) 将数据源对象注册为一个命名服务,然后使用JNDI提供的服务接口,按照名称检索对应的数据 ...