HDU 6333 莫队+组合数
Problem B. Harvest of Apples
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2397 Accepted Submission(s): 934
Count the number of ways to pick at most m apples.
Each test case consists of one line with two integers n,m (1≤m≤n≤105).
解析 不难发现S(n,m)也满足左上角加右上角(杨辉三角) 所以根据公式可以O(1)得到S(n-1,m),S(n+1,m),S(n,m-1),S(n,m+1) 可以看做区间的转移 从而套用莫队实现求解

AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan prllf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
typedef long long ll;
const ll maxn=1e5+,inf=0x3f3f3f3f;
const ll mod=1e9+;
ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
ll fac[maxn],inv[maxn],ans[maxn];
ll chunk;
struct node
{
ll l,r,id,chunk;
}q[maxn];
bool cmp(node a,node b)
{
if(a.chunk!=b.chunk)
return a.l<b.l;
return a.r<b.r;
}
void init()
{
fac[]=fac[]=;
inv[]=inv[]=;
for(ll i=;i<maxn;i++)
{
fac[i]=fac[i-]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
for(ll i=;i<maxn;i++) //不可以写成一个for inv还会用到
inv[i]=inv[i-]*inv[i]%mod; //可以再开一个数组 写成一个for
}
ll C(ll x,ll y)
{
if(y>x) return ;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
init();//预处理组合数逆元 从而O(1)获得组合数 实现转移
ll t;
chunk=sqrt(maxn);
scanf("%lld",&t);
for(ll i=;i<=t;i++)
{
ll n,m;
scanf("%lld%lld",&n,&m);
q[i]=node{n,m,i,n/chunk+};
}
sort(q+,q++t,cmp);
ll l=,r=,res=;
for(ll i=;i<=t;i++)
{
while(l<q[i].l)
{
res=(res*%mod-C(l,r)+mod)%mod;
l++;
}
while(l>q[i].l)
{
l--;
res=(res+C(l,r))%mod*inv[]%mod;
}
while(r>q[i].r)
{
res=(res-C(l,r)+mod)%mod;
r--;
}
while(r<q[i].r)
{
r++;
res=(res+C(l,r))%mod;
}
ans[q[i].id]=res;
}
for(ll i=;i<=t;i++)
printf("%lld\n",ans[i]);
return ;
}
HDU 6333 莫队+组合数的更多相关文章
- Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元
题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...
- Hdu 5213-Lucky 莫队,容斥原理,分块
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5213 Lucky Time Limit: 6000/3000 MS (Java/Others) Me ...
- HDU6333 莫队+组合数
题目大意: 给定n m 在n个数中最多选择m个的所有方案 #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3 ...
- HDU 4358 莫队算法+dfs序+离散化
Boring counting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 98304/98304 K (Java/Others)T ...
- HDU 4638 (莫队)
题目链接:Problem - 4638 做了两天莫队和分块,留个模板吧. 当插入r的时候,设arr[r]代表r的位置的数字,判断vis[arr[r-1]]和vis[arr[r+1]]是否访问过,如果两 ...
- HDU 4638 莫队算法
Group Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 5145(莫队算法+逆元)
NPY and girls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 联赛模拟测试12 C. sum 莫队+组合数
题目描述 分析 \(80\) 分的暴力都打出来了还是没有想到莫队 首先对于 \(s[n][m]\) 我们可以很快地由它推到 \(s[n][m+1]\) 和 \(s[n][m-1]\) 即 \(s[n] ...
- HDU 6534 莫队+ 树状数组
题意及思路:https://blog.csdn.net/tianyizhicheng/article/details/90369491 代码: #include <bits/stdc++.h&g ...
随机推荐
- Performance testing architecture
一张图胜过千言. 这个还只是目前阶段的架构,后期会在CI以及自动化驱动下形成具有管理功能的平台.
- SQL——将两列合并成一列
将两列合并连接成一列,需要注意的是列的格式必须是NVARCHAR或者VARCHAR类型 ), call_uuid, ) +','+agent_code ' PerDate 1 ,980408102 ...
- SQLite – ORDER 子句
SQLite - ORDER BY子句 The SQLite ORDER BY子句用于数据按升序或降序排序,基于一个或多个列. 语法: ORDER BY子句的基本语法如下: SELECT column ...
- Oracle数据库升级前必要的准备工作
Oracle数据库升级向来是一门纷繁复杂的工程,DBA需要为产品数据库的升级耗费大量时间精力在准备工作上:因为其升级复杂度高,所以即便做了较为充分的准备仍可能在升级过程中遇到意想不到的问题,为了更高效 ...
- 使用正则进行HTML页面属性的替换
使用正则表达式拼接富文本框 package com.goboosoft.common.utils; import org.apache.commons.lang3.StringUtils; impor ...
- postman对登陆进行压力测试的方法
1.填写完整参数,设置好变量,选择好环境,保存好 2.将变量mobile_phone和password的值以如下图的格式,填写到Excel表格中,然后以csv(逗号分隔)的形式进行保存 3.点击此测试 ...
- 华为S5700交换机初始化和配置SSH和TELNET远程登录方法
基础设置: 配置登陆IP地址<Quidway> system-view ...
- Restful API(转)
原文链接 http://www.ruanyifeng.com/blog/2014/05/restful_api.html 一.协议 API与用户的通信协议,总是使用HTTPs协议. 二.域名 应该尽量 ...
- 分分钟钟学会Python - 模块
目录 模块 1 模块基础知识 2 random 返回随机生成的一个实数 3 hashlib 摘要算法模块 Hmac算法 4 time /datetime 时间模块 5 getpass 密码不显示(只能 ...
- python_函数递归
函数递归 函数递归:函数的递归调用,即在函数调用的过程中,又直接或间接地调用了函数本身 # import sys # print(sys.getrecursionlimit()) # sys.setr ...