network = tflearn.input_data(shape=[None, max_len], name='input')
network = tflearn.embedding(network, input_dim=volcab_size, output_dim=32) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_1d(network, 2)
network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_1d(network, 2)
#network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
#network = max_pool_1d(network, 2) network = batch_normalization(network) #network = fully_connected(network, 512, activation='relu')
#network = dropout(network, 0.5)
network = fully_connected(network, 64, activation='relu')
network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax')

迭代一次,acc是98.5%多一点。

如果使用:

# 关于一维CNN的网络,例子较少
# https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py
# Building convolutional network
network = input_data(shape=[None, 100], name='input')
network = tflearn.embedding(network, input_dim=10000, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)

acc是95%多一点点。

使用类似 vgg的模型, https://github.com/AhmetHamzaEmra/tflearn/blob/master/examples/images/VGG19.py

    network = tflearn.input_data(shape=[None, max_len], name='input')
network = tflearn.embedding(network, input_dim=volcab_size, output_dim=64)
network = conv_1d(network, 64, 3, activation='relu')
network = conv_1d(network, 64, 3, activation='relu')
network = max_pool_1d(network, 2, strides=2)
network = conv_1d(network, 128, 3, activation='relu')
network = conv_1d(network, 128, 3, activation='relu')
network = max_pool_1d(network, 2, strides=2)
network = conv_1d(network, 256, 3, activation='relu')
network = conv_1d(network, 256, 3, activation='relu')
network = conv_1d(network, 256, 3, activation='relu')
network = max_pool_1d(network, 2, strides=2)
network = batch_normalization(network)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')

acc是98.5%多一点,稍微比第一种模型高,但是训练时间太长。

其他的,本质上都是加卷积层或者FC:

。。。   
network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_1d(network, 2)
network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_1d(network, 2)
network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_1d(network, 2)
。。。

CNN 文本分类模型优化经验——关键点:加卷积层和FC可以提高精度,在FC前加BN可以加快收敛,有时候可以提高精度,FC后加dropout,conv_1d的input维度加大可以提高精度,但是到256会出现OOM。的更多相关文章

  1. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  2. 使用PyTorch建立你的第一个文本分类模型

    概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch ...

  3. CNN 文本分类

    谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的.  下面 ...

  4. 深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)

    目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Networ ...

  5. CNN文本分类

    CNN用于文本分类本就是一个不完美的解决方案,因为CNN要求输入都是一定长度的,而对于文本分类问题,文本序列是不定长的,RNN可以完美解决序列不定长问题, 因为RNN不要求输入是一定长度的.那么对于C ...

  6. pytorch -- CNN 文本分类 -- 《 Convolutional Neural Networks for Sentence Classification》

    论文  < Convolutional Neural Networks for Sentence Classification>通过CNN实现了文本分类. 论文地址: 666666 模型图 ...

  7. 文本分类-TensorRT优化结果对比图

    做的文本二分类,使用tensorRT进行图优化和加速,输出预测概率结果对比如下: 从结果对比来看,概率值有微小的变化,但不影响最终的分类

  8. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

  9. CNN tensorflow text classification CNN文本分类的例子

    from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) T ...

随机推荐

  1. 让浏览器不再显示 https 页面中的 http 请求警报<meta http-equiv="Content-Security-Policy" content="upgrade-insecure-requests">

    <meta http-equiv="Content-Security-Policy" content="upgrade-insecure-requests" ...

  2. LeetCode_18 4Sum

    Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums s ...

  3. TFRecordReader "OutOfRangeError (see above for traceback): RandomShuffleQueue '_1_shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 1, current size 0)" 问题原因总结;

    1. tf.decode_raw(features['image_raw'],tf.uint8) 解码时,数据类型有没有错?tf.float32 和tf.uint8有没有弄混??? 2. tf.tra ...

  4. centos7+VMware Workstation创建共享文件夹

    1.第一步设置宿主机共享文件夹路径 2.挂载VMware Tools,如下操作会将tools以光盘挂载点的方式进入到系统中. 3.centos7 挂载存有VMware Tools的光盘并进行安装 1) ...

  5. MFC 多行文本显示心得

    最近在利用MFC做端口扫描器实验,其中涉及CString.char.int等之间的转换.文本框的多行显示问题.总是显示底层最新结果等问题,下面写一些我总结的相关方法. 一.CString 转  cha ...

  6. buf.readDoubleBE()

    buf.readDoubleBE(offset[, noAssert]) buf.readDoubleLE(offset[, noAssert]) offset {Number} 0 <= of ...

  7. node-sass 安装失败

    安装 npm install 时偶尔遇到报错:没有安装python或node-sass 安装失败的问题,百度之后发现是被墙了,但根据百度的方法换了淘宝镜像和用了vpn都安装失败, 原因可能是没有卸载之 ...

  8. JavaSE 学习笔记之新特性之泛型(二十)

    泛型:jdk1.5版本以后出现的一个安全机制.表现格式:< > 好处: 1:将运行时期的问题ClassCastException问题转换成了编译失败,体现在编译时期,程序员就可以解决问题. ...

  9. CodeForcesGym 100753K Upside down primes

    Upside down primes Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForc ...

  10. poj 1562 简单深搜

    //搜八个方向即可 #include<stdio.h> #include<string.h> #define N 200 char ma[N][N]; int n,m,vis[ ...