JZOJ 5791 阶乘 —— 因数
题目:https://jzoj.net/senior/#main/show/5791
题意:有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值。
对于10%的数据,n<=10
对于30%的数据,n<=1000
对于100%的数据,n<=100000,a[i]<=100000
首先,p * q = m!,也就是 p 是 m! 的一个因数;
把 p 质因数分解,那么 m! 的每个对应质因数的次数都 >= p 中对应质因数的次数;
不必乘出来 p,只要把每个 a[i] 质因数分解即可;
对于 m!,统计质因数的次数就是 cnt[i] += m / pri[i] , m /= pri[i],证明之类的很好想啦。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5+,inf=1e9;
int n,a[maxn],p[maxn],ans,mx,pri[maxn],cnt;
bool ck(int x)
{
if(x<mx)return ;
for(int i=,t,tmp;i<=x&&i<=mx;i++)
{
if(!p[i])continue;
t=; tmp=x;
while(tmp)t+=tmp/i,tmp/=i;
if(t<p[i]){/*printf("t=%d p[%d]=%d\n",t,i,p[i]);*/ return ;}
// printf("x=%d t=%d p[%d]=%d\n",x,t,i,p[i]);
}
return ;
}
int main()
{
freopen("factorial.in","r",stdin);
freopen("factorial.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
for(int j=;j*j<=a[i];j++)
while(a[i]%j==)p[j]++,a[i]/=j,mx=max(mx,j);
if(a[i]>)p[a[i]]++; mx=max(mx,a[i]);
}
int l=,r=inf;
while(l<=r)
{
int mid=((l+r)>>);
// printf("l=%d r=%d mid=%d ck=%d\n",l,r,mid,ck(mid));
if(ck(mid))ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
return ;
}
JZOJ 5791 阶乘 —— 因数的更多相关文章
- [JZOJ 5791] 阶乘
题意:求一个最小的\(m\),保证\(\prod a[i] * x = m!\) 思路: 考虑\(m!\)里面有多少个东西?? \(m\)个. 且是一个排列. 那么求一个最小的\(m\)使得前面的式子 ...
- JZOJ 5791. 【NOIP2008模拟】阶乘
5791. [NOIP2008模拟]阶乘 (File IO): input:factorial.in output:factorial.out Time Limits: 1000 ms Memory ...
- 阶乘 求n!中质因数的个数
在n!中末尾有几个0 取决于n!中5的个数(2肯定比5多) 所以遍历从1到n的数,看总共有几个5即可 ..N do j = i; == ) ++ret; j /= ; end end 有个nb的方法: ...
- bzoj 3283: 运算器 扩展Baby Step Giant Step && 快速阶乘
3283: 运算器 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 184 Solved: 59[Submit][Status][Discuss] D ...
- n!(n的阶乘)
我们在这里介绍一些关于n!的性质. 在计数问题中,经常需要用到n!.有必要了解n!在mod p下的一些性质.下面我们假设p是素数,n!=ape(a无法被p整除),并试图求解e和a mod p(把这个东 ...
- CodeForces - 633B A Trivial Problem 数论-阶乘后缀0
A Trivial Problem Mr. Santa asks all the great programmers of the world to solve a trivial problem. ...
- luogu1445 [violet]樱花 阶乘分解
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...
- [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)
题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...
- 【数论】[因数个数]P4167樱花
题目描述 求不定方程 \(\frac {1}{x} + \frac{1}{y} = \frac{1}{n!}\)的正整数解的个数 \(n \leq 100^6\) Solution 化简得 \(x * ...
随机推荐
- 如何做到在webpack打包vue项目后,在外部动态修改配置文件
在我们做完vue项目后,只需要执行 npm run dist 就可以轻松进行打包转测试,可是如果我们临时需要修改一些配置文件比如域名,这时候我们就有点懵逼了,那就修改了再重新打一次包? NO NO N ...
- UVA - 1608 Non-boring sequences(分治法)
题目: 如果一个序列的任意连续的子序列中至少有一个只出现一次的元素,则称这个序列是不无聊的.输入一个n(n≤200000)个元素的序列A(各个元素均为109以内的非负整数),判断它是不是不无聊的. 思 ...
- MFC 多行文本显示心得
最近在利用MFC做端口扫描器实验,其中涉及CString.char.int等之间的转换.文本框的多行显示问题.总是显示底层最新结果等问题,下面写一些我总结的相关方法. 一.CString 转 cha ...
- page对象的使用及常见方法
page对象的使用及常见方法 制作人:全心全意 page对象代表JSP本身,只有在JSP页面内才是合法的.page对象本质上是包含当前Servlet接口引用的变量,可以看作是this关键字的别名. p ...
- importdata-- matlab
source file: test.dat *************************** Day1 Day2 Day3 Day4 Day5 Day6 Day795.01 76.2 ...
- angular环境安装与配置
1.安装npm和nodejs,下载地址:https://nodejs.org/en/download/ node -v npm -v 2.配置淘宝代理,下载node_modules npm con ...
- 【Codeforces 490C】Hacking Cypher
[链接] 我是链接,点我呀:) [题意] 让你把一个字符串分成左右两个部分 形成两个正数 使得这两个正数一个能被a整除,一个能被b整除 找到任意一个解就可以 [题解] 枚举分割的断点i 枚举的时候用同 ...
- poj 2114 树的分治 可作模板
/* 啊啊啊啊啊啊啊本题证明一个问题,在实际应用中sort比qsort块 还有memset这类初始化能不加尽量别加,很浪费时间 原来的程序把qsort该成sort,去掉一个无用memset就a了时间不 ...
- HDU5266 LCA 树链剖分LCA 线段树
HDU5266 LCA Description 给一棵 n 个点的树,Q 个询问 [L,R] : 求点 L , 点 L+1 , 点 L+2 -- 点 R 的 LCA. Input 多组数据. The ...
- poj 2112
#include <cstdio> #include <cstring> ;//点数的最大值 ;//边数的最大值 const int INF=0x3fffffff; struc ...