JZOJ 5791 阶乘 —— 因数
题目:https://jzoj.net/senior/#main/show/5791
题意:有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值。
对于10%的数据,n<=10
对于30%的数据,n<=1000
对于100%的数据,n<=100000,a[i]<=100000
首先,p * q = m!,也就是 p 是 m! 的一个因数;
把 p 质因数分解,那么 m! 的每个对应质因数的次数都 >= p 中对应质因数的次数;
不必乘出来 p,只要把每个 a[i] 质因数分解即可;
对于 m!,统计质因数的次数就是 cnt[i] += m / pri[i] , m /= pri[i],证明之类的很好想啦。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5+,inf=1e9;
int n,a[maxn],p[maxn],ans,mx,pri[maxn],cnt;
bool ck(int x)
{
if(x<mx)return ;
for(int i=,t,tmp;i<=x&&i<=mx;i++)
{
if(!p[i])continue;
t=; tmp=x;
while(tmp)t+=tmp/i,tmp/=i;
if(t<p[i]){/*printf("t=%d p[%d]=%d\n",t,i,p[i]);*/ return ;}
// printf("x=%d t=%d p[%d]=%d\n",x,t,i,p[i]);
}
return ;
}
int main()
{
freopen("factorial.in","r",stdin);
freopen("factorial.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
for(int j=;j*j<=a[i];j++)
while(a[i]%j==)p[j]++,a[i]/=j,mx=max(mx,j);
if(a[i]>)p[a[i]]++; mx=max(mx,a[i]);
}
int l=,r=inf;
while(l<=r)
{
int mid=((l+r)>>);
// printf("l=%d r=%d mid=%d ck=%d\n",l,r,mid,ck(mid));
if(ck(mid))ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
return ;
}
JZOJ 5791 阶乘 —— 因数的更多相关文章
- [JZOJ 5791] 阶乘
题意:求一个最小的\(m\),保证\(\prod a[i] * x = m!\) 思路: 考虑\(m!\)里面有多少个东西?? \(m\)个. 且是一个排列. 那么求一个最小的\(m\)使得前面的式子 ...
- JZOJ 5791. 【NOIP2008模拟】阶乘
5791. [NOIP2008模拟]阶乘 (File IO): input:factorial.in output:factorial.out Time Limits: 1000 ms Memory ...
- 阶乘 求n!中质因数的个数
在n!中末尾有几个0 取决于n!中5的个数(2肯定比5多) 所以遍历从1到n的数,看总共有几个5即可 ..N do j = i; == ) ++ret; j /= ; end end 有个nb的方法: ...
- bzoj 3283: 运算器 扩展Baby Step Giant Step && 快速阶乘
3283: 运算器 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 184 Solved: 59[Submit][Status][Discuss] D ...
- n!(n的阶乘)
我们在这里介绍一些关于n!的性质. 在计数问题中,经常需要用到n!.有必要了解n!在mod p下的一些性质.下面我们假设p是素数,n!=ape(a无法被p整除),并试图求解e和a mod p(把这个东 ...
- CodeForces - 633B A Trivial Problem 数论-阶乘后缀0
A Trivial Problem Mr. Santa asks all the great programmers of the world to solve a trivial problem. ...
- luogu1445 [violet]樱花 阶乘分解
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...
- [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)
题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...
- 【数论】[因数个数]P4167樱花
题目描述 求不定方程 \(\frac {1}{x} + \frac{1}{y} = \frac{1}{n!}\)的正整数解的个数 \(n \leq 100^6\) Solution 化简得 \(x * ...
随机推荐
- 反转链表_JAVA
package algorithms; /* * * * 输入一个链表,反转链表后,输出新链表的表头. * public class ListNode { int val; ListNode next ...
- 02Oracle Database 安装,卸载,系统服务,系统组件及系统表空间
Oracle Database 安装,卸载,系统服务,系统组件及系统表空间 Oracle Database 安装 Oracle Database 卸载 Oracle Database 系统服务 Ora ...
- 15Microsoft SQL Server 数据库维护
Microsoft SQL Server 数据库维护 2.6.1数据库联机与脱机 --联机:该状态为数据库正常状态,也就是我们常看到的数据库的状态,该状态下的数据库处于可操作状态,可以对数据库进行任何 ...
- ssh多主机
#node1 HOST node1 HostName 10.10.10.10 Port 21 User ubuntu UseKeychain yes AddKeysToAgent yes #node2 ...
- eBPF监控工具bcc系列五工具funccount
eBPF监控工具bcc系列五工具funccount funccount函数可以通过匹配来跟踪函数,tracepoints 或USDT探针.例如所有以vfs_ 开头的内核函数. ./funccount ...
- 字符串、散列--P1598 垂直柱状图
题目描述 写一个程序从输入文件中去读取四行大写字母(全都是大写的,每行不超过100个字符),然后用柱状图输出每个字符在输入文件中出现的次数.严格地按照输出样例来安排你的输出格式. 输入输出格式 输入格 ...
- 队列的头函数使用C++
queue queue模板类的定义在<queue>头文件中. 与stack模板类很相似,queue模板类也需要两个模板参数,一个是元素类型,一个容器类型,元素类型是必要的,容器类型是可选的 ...
- Literature Review on Tidal Turbine
source: scopus , SCIE keywords in tilte: tidal turbine Software: Bibliometrix
- scanf与getchar
如下: 5 5 R R R R R R R R R R R R R R R R R R R R R R R R R 只允许用scanf,如何写读取函数. 由于 ...
- 封装的一些常见的JS DOM操作和数据处理的函数.
//用 class 获取元素 function getElementsByClass(className,context) { context = context || document; if(do ...