题目:https://jzoj.net/senior/#main/show/5791

题意:有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值。

对于10%的数据,n<=10
对于30%的数据,n<=1000
对于100%的数据,n<=100000,a[i]<=100000

首先,p * q = m!,也就是 p 是 m! 的一个因数;

把 p 质因数分解,那么 m! 的每个对应质因数的次数都 >= p 中对应质因数的次数;

不必乘出来 p,只要把每个 a[i] 质因数分解即可;

对于 m!,统计质因数的次数就是 cnt[i] += m / pri[i] , m /= pri[i],证明之类的很好想啦。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5+,inf=1e9;
int n,a[maxn],p[maxn],ans,mx,pri[maxn],cnt;
bool ck(int x)
{
if(x<mx)return ;
for(int i=,t,tmp;i<=x&&i<=mx;i++)
{
if(!p[i])continue;
t=; tmp=x;
while(tmp)t+=tmp/i,tmp/=i;
if(t<p[i]){/*printf("t=%d p[%d]=%d\n",t,i,p[i]);*/ return ;}
// printf("x=%d t=%d p[%d]=%d\n",x,t,i,p[i]);
}
return ;
}
int main()
{
freopen("factorial.in","r",stdin);
freopen("factorial.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
for(int j=;j*j<=a[i];j++)
while(a[i]%j==)p[j]++,a[i]/=j,mx=max(mx,j);
if(a[i]>)p[a[i]]++; mx=max(mx,a[i]);
}
int l=,r=inf;
while(l<=r)
{
int mid=((l+r)>>);
// printf("l=%d r=%d mid=%d ck=%d\n",l,r,mid,ck(mid));
if(ck(mid))ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
return ;
}

JZOJ 5791 阶乘 —— 因数的更多相关文章

  1. [JZOJ 5791] 阶乘

    题意:求一个最小的\(m\),保证\(\prod a[i] * x = m!\) 思路: 考虑\(m!\)里面有多少个东西?? \(m\)个. 且是一个排列. 那么求一个最小的\(m\)使得前面的式子 ...

  2. JZOJ 5791. 【NOIP2008模拟】阶乘

    5791. [NOIP2008模拟]阶乘 (File IO): input:factorial.in output:factorial.out Time Limits: 1000 ms  Memory ...

  3. 阶乘 求n!中质因数的个数

    在n!中末尾有几个0 取决于n!中5的个数(2肯定比5多) 所以遍历从1到n的数,看总共有几个5即可 ..N do j = i; == ) ++ret; j /= ; end end 有个nb的方法: ...

  4. bzoj 3283: 运算器 扩展Baby Step Giant Step && 快速阶乘

    3283: 运算器 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 184  Solved: 59[Submit][Status][Discuss] D ...

  5. n!(n的阶乘)

    我们在这里介绍一些关于n!的性质. 在计数问题中,经常需要用到n!.有必要了解n!在mod p下的一些性质.下面我们假设p是素数,n!=ape(a无法被p整除),并试图求解e和a mod p(把这个东 ...

  6. CodeForces - 633B A Trivial Problem 数论-阶乘后缀0

    A Trivial Problem Mr. Santa asks all the great programmers of the world to solve a trivial problem. ...

  7. luogu1445 [violet]樱花 阶乘分解

    题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...

  8. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  9. 【数论】[因数个数]P4167樱花

    题目描述 求不定方程 \(\frac {1}{x} + \frac{1}{y} = \frac{1}{n!}\)的正整数解的个数 \(n \leq 100^6\) Solution 化简得 \(x * ...

随机推荐

  1. 反转链表_JAVA

    package algorithms; /* * * * 输入一个链表,反转链表后,输出新链表的表头. * public class ListNode { int val; ListNode next ...

  2. 02Oracle Database 安装,卸载,系统服务,系统组件及系统表空间

    Oracle Database 安装,卸载,系统服务,系统组件及系统表空间 Oracle Database 安装 Oracle Database 卸载 Oracle Database 系统服务 Ora ...

  3. 15Microsoft SQL Server 数据库维护

    Microsoft SQL Server 数据库维护 2.6.1数据库联机与脱机 --联机:该状态为数据库正常状态,也就是我们常看到的数据库的状态,该状态下的数据库处于可操作状态,可以对数据库进行任何 ...

  4. ssh多主机

    #node1 HOST node1 HostName 10.10.10.10 Port 21 User ubuntu UseKeychain yes AddKeysToAgent yes #node2 ...

  5. eBPF监控工具bcc系列五工具funccount

    eBPF监控工具bcc系列五工具funccount funccount函数可以通过匹配来跟踪函数,tracepoints 或USDT探针.例如所有以vfs_ 开头的内核函数. ./funccount ...

  6. 字符串、散列--P1598 垂直柱状图

    题目描述 写一个程序从输入文件中去读取四行大写字母(全都是大写的,每行不超过100个字符),然后用柱状图输出每个字符在输入文件中出现的次数.严格地按照输出样例来安排你的输出格式. 输入输出格式 输入格 ...

  7. 队列的头函数使用C++

    queue queue模板类的定义在<queue>头文件中. 与stack模板类很相似,queue模板类也需要两个模板参数,一个是元素类型,一个容器类型,元素类型是必要的,容器类型是可选的 ...

  8. Literature Review on Tidal Turbine

    source: scopus , SCIE keywords in tilte: tidal turbine Software: Bibliometrix

  9. scanf与getchar

    如下: 5  5 R  R  R  R  R R  R  R  R  R R  R  R  R  R R  R  R  R  R R  R  R  R  R 只允许用scanf,如何写读取函数. 由于 ...

  10. 封装的一些常见的JS DOM操作和数据处理的函数.

    //用 class 获取元素 function getElementsByClass(className,context) { context = context || document; if(do ...