问题描述:

意思就是说:给定一个数组,寻找一种选取方法,使得在保证任何两个相邻元素不同时被选的条件下得到的数值总和最大。

1. 递归

  设nums为数组首地址,numsSize为数组的大小,max[i]表示从第i(0 <= i < numsSize)个元素开始所能得到的最大值。则原问题描述为求max[0]。

  

  其中nums[i]+max[i+2]表示选择第i个元素,因此第i+1个元素不能选择;max[i+1]表示不选择第i个元素,而max[i+1]=max{nums[i+1]+max[i+3], max[i+2]},很明显max[i+2]小于nums[i]+max[i+2],因此:

  

  加上边界控制语句,代码如下:

 int maxMoney ( int *nums, int numsSize, int startIndex) {
     if ( startIndex >= numsSize ) {
         ;
     } ) {
         return *(nums+startIndex);
     }
     );
     ) + maxMoney(nums, numsSize, startIndex+);
     return first>second?first:second;
 }

 int rob(int* nums, int numsSize) {
     ) {
         ;
     }  ) {
         return *nums;
     }  ) {
         )? *nums : *(nums+);
     }
     );
     ) + maxMoney(nums, numsSize, );
     return first>second?first:second;
 }

2. 迭代

  当i=numsSize-1(表示只剩下最后一个元素的时候),最大的只即为nums[i];

  当i=numsSzie-2(剩下最后两个元素的时候,下文其它情况依次类推),最大的情况是nums[i](选择numsSize-2)或nums[i+1](选择numsSize-1);而nums[i+1]已经在i=numsSize-1的时候进行了分析,因此不用再重复;

  当i=numsSize-3时,最大值只可能是

    1. nums[i]+nums[i+2],或者
    2. nums[i+1];

  而nums[i+1](即nums[numsSize-2])已经在第二步计算过,因此只需要记录nums[i]+nums[i+2]的值;

  ……

  下表是一个简单的分析过程,一些不可能出现最大值的情况没有写出来。

  通过上述分析可知,求max[i]时,不选择第i个元素的情况(即max[i+1])已经计算过,因此只需要增加选择第i个元素的情况,那么最终的结果就是这两个值中较大的。

  而对于选择i的情况,第i+1元素由于限制条件将不能选择,因此第i+2个元素可以选可以不选:

    1. 如果选择第i+2个元素,则max[i]=nums[i]+max[i+2];
    2. 如果不选择第i+2个元素,则i+3个元素将必须选择(因为如果不选,则将出现连续3个元素没有选择的情况,这样无论如何都不可能得到一个整体最优的值),则max[i]=nums[i]+max[i+3]

  由于max[i+2]和max[i+3]已经计算出来,因此选择其中一个最大的值作为max[i]的结果。

  这样可以计算出max中所有元素的值,但所有的值都是选择当前假设条件下第一个元素的情况,不选择当前元素的情况即为前一次计算的结果。最终的结果即为max[0]和max[1]中较大的。

 int rob(int* nums, int numsSize) {
      ) {;}
      ) {];}

     , temp2 = ;
      ) {
         temp1 = nums[];
         temp2 = nums[];
         return temp1 > temp2 ? temp1 : temp2;
     } ) {
         temp1 = nums[] + nums[];
         temp2 = nums[];
         return temp1 > temp2 ? temp1 : temp2;
     } else {
         // maxValue[i] 表示选择第i个的最大值
         int *maxValue = (int*)malloc(numsSize * sizeof(int));
         maxValue[numsSize-] = nums[numsSize-];
         maxValue[numsSize-] = nums[numsSize-];
         maxValue[numsSize-] = nums[numsSize-] + nums[numsSize-];
         ; i >= ; i--) {
             temp1 = nums[i] + maxValue[i+];
             temp2 = nums[i] + maxValue[i+];
             maxValue[i] = temp1 > temp2 ? temp1 : temp2;
         }
         // maxValue[0]对应第一个(下标为0)选择的最大值,maxValue[1]对应第1个不选择的最大值
         ] > maxValue[] ? maxValue[] : maxValue[];
     }
 }

LeetCode Day5——House Robber的更多相关文章

  1. Leetcode 337. House Robber III

    337. House Robber III Total Accepted: 18475 Total Submissions: 47725 Difficulty: Medium The thief ha ...

  2. [LeetCode] 213. House Robber II 打家劫舍 II

    Note: This is an extension of House Robber. After robbing those houses on that street, the thief has ...

  3. [LeetCode] 337. House Robber III 打家劫舍 III

    The thief has found himself a new place for his thievery again. There is only one entrance to this a ...

  4. leetcode:House Robber(动态规划dp1)

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  5. [LeetCode] 337. House Robber III 打家劫舍之三

    The thief has found himself a new place for his thievery again. There is only one entrance to this a ...

  6. [LeetCode] 213. House Robber II 打家劫舍之二

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  7. [LeetCode] 198. House Robber 打家劫舍

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  8. 【leetcode】House Robber

    题目简述 You are a professional robber planning to rob houses along a street. Each house has a certain a ...

  9. Leetcode 198 House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

随机推荐

  1. execute immediate的简单用法(oracle)

    直接上示例代码: create or replace procedure proc_test( --参数区域 ) is --变量区域 --sql脚本 v_sql ) :=''; --记录学生数量 v_ ...

  2. Riak VClock

    Riak VClock 关于向量时钟的概念.在这里就多讲了,大家能够參照一下Dynamo的论文了解一下,向量时钟在分布式主要用于解决一致性性问题.能够和CRDTs一起看. 以下的源码是參照riak中的 ...

  3. Samsung K9F1G08U0D SLC NAND FLASH简介(待整理)

    Samsung  K9F1G08U0D,数据存储容量为128M,采用块页式存储管理.8个I/O引脚充当数据.地址.命令的复用端口.详细:http://www.linux-mtd.infradead.o ...

  4. LDAP实例异常停止日志提示虚拟内存virtual memory不足

    [05/Oct/2014:20:50:37 +0800] - ERROR<5135> - Resource Limit - conn=-1 op=-1 msgId=-1 - Memory ...

  5. escape和unescape给字符串编码

    var before = "\xxx\xxx" var after = escape(before); var after2 = unescape(after );

  6. java学习之Date的使用

    Date使用,主要要注意将日期格式化,否则返回的是系统默认的格式.请自己查阅API文档. import java.util.*; import java.text.*; public class Te ...

  7. B - 敌兵布阵 线段树的点

    B - 敌兵布阵 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descriptio ...

  8. Emgu学习笔记(一)安装及运行Sample

    1.简单说明 Emgu是Dot Net平台对OpenCV的封装,本质上没有增加新功能,是通过Dot Net的平台调用技术直接调用OpenCV C++语言写的库,使用我们可以方便用.net平台通过Ope ...

  9. [转]activiti5用户任务分配

    用户任务分配办理人:1.用户任务可以直接分配给一个用户,这可以通过humanPerformer元素定义. humanPerformer定义需要一个 resourceAssignmentExpressi ...

  10. xstream对象xml互转

    1.引入jar包 xpp3_min-1.1.4c.jarxstream-1.4.8.jar 2.建立java bean package com.jdw.bean; import java.util.A ...