[POJ 2184]--Cow Exhibition(0-1背包变形)
题目链接:http://poj.org/problem?id=2184
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 9479 | Accepted: 3653 |
Description
The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow.
Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si's and, likewise, the total funness TF of the group is the sum of the Fi's. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative.
Input
* Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow.
Output
Sample Input
5
-5 7
8 -6
6 -3
2 1
-8 -5
Sample Output
8 题目大意:
N头奶牛中(N大于0且N小于100) 选择一部分去参加一个展览。 每头奶牛有两个指标,Si和Fi(-1000<=Si,Fi<=1000),
分别代表每头奶牛的聪明指数和快乐指数。求所挑选奶牛的Si和Fi的总和最大值,且Si和Fi各自的和数不能小于0。 解题思路:怎么说呐~~此题略坑,也是看了不少博客a出来的,巧妙的运用dp,吧si的正负影响转移了,
然后0-1背包的思路来做按,依照si正负按照正反两个方向dp,然后在满足条件的情况下,
然后你会发现最后i的增量就是满足条件的si的和,然后遍历dp数组筛选即可~~(具体的看看代码吧) 代码如下:
#include<iostream>
#include<cstring>
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int add = ;
int dp[], si, fi, n, i, j, ans;
int main()
{
cin >> n;
memset(dp, -inf, sizeof(dp));
dp[add] = ;
for (i = ; i <= n; i++)
{
cin >> si >> fi;
if (si > )
{
for (j = maxn + add; j >= si; j--)
if (dp[j - si] + fi > dp[j] && dp[j - si] > -inf)//注意边界判断
dp[j] = dp[j - si] + fi;
}
else
{
for (j = ; j <= maxn + add + si; j++)
if (dp[j - si] + fi > dp[j] && dp[j - si] > -inf)
dp[j] = dp[j - si] + fi;
}
}
for (i = add; i <= maxn + add; i++)
if (dp[i] >= && i + dp[i] - add > ans)
ans = i + dp[i] - add;
cout << ans << endl;
return ;
}
[POJ 2184]--Cow Exhibition(0-1背包变形)的更多相关文章
- POJ 2184 Cow Exhibition【01背包+负数(经典)】
POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...
- poj 2184 Cow Exhibition(01背包)
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10882 Accepted: 4309 D ...
- POJ 2184 Cow Exhibition (01背包变形)(或者搜索)
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10342 Accepted: 4048 D ...
- poj 2184 Cow Exhibition(dp之01背包变形)
Description "Fat and docile, big and dumb, they look so stupid, they aren't much fun..." - ...
- POJ 2184:Cow Exhibition(01背包变形)
题意:有n个奶牛,每个奶牛有一个smart值和一个fun值,可能为正也可能为负,要求选出n只奶牛使他们smart值的和s与fun值得和f都非负,且s+f值要求最大. 分析: 一道很好的背包DP题,我们 ...
- POJ 2184 Cow Exhibition (01背包的变形)
本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...
- poj 2184 Cow Exhibition(背包变形)
这道题目和抢银行那个题目有点儿像,同样涉及到包和物品的转换. 我们将奶牛的两种属性中的一种当作价值,另一种当作花费.把总的价值当作包.然后对于每一头奶牛进行一次01背包的筛选操作就行了. 需要特别注意 ...
- POJ 2184 Cow Exhibition 奶牛展(01背包,变形)
题意:有只奶牛要证明奶牛不笨,所以要带一些奶牛伙伴去证明自己.牛有智商和幽默感,两者可为负的(难在这),要求所有牛的智商和之 / 幽默感之和都不为负.求两者之和的最大值. 思路:每只牛可以带或不带上, ...
- POJ 2184 Cow Exhibition 01背包
题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负 且 sum(x[k]) >= 0 sum(y[k] ...
随机推荐
- 【转】20个令人敬畏的jQuery插件
为网页设计师和开发推荐20个令人敬畏的jQuery插件.例如滑块,图像画廊,幻灯片插件,jQuery的导航菜单,jQuery文件上传,图像旋转器,标签的插件,用户界面元素,网络接触形式,模态窗口, ...
- Linux中fork()函数详解(转载)
[原创地址]http://blog.csdn.net/jason314/article/details/5640969 [转载地址]http://www.cnblogs.com/bastard/arc ...
- 关于地址的理解 C++
#include <iostream> using namespace std; int main(){ ; int* ptr; ptr=&a; cout<<& ...
- 射频识别技术漫谈(27)——CPU卡概述
智能卡按安全级别可以分为三类:存储器卡.逻辑加密卡和CPU卡,其中CPU卡是安全级别最高的.从“CPU”这个名字可以看出,CPU卡最大的特点就是卡片里面有一个"CPU",有了CPU ...
- 射频识别技术漫谈(24)——ISO15693的防冲突与传输协议
遵守ISO15693协议的电子标签都有一个8字节共64bit的全球唯一序列号(UID),这个UID一方面可以使全球范围内的标签互相区别,更重要的是可以在多标签同时读写时用于防冲突.8字节UID按权重从 ...
- C/C++程序员面试大纲
基础篇:操作系统.计算机网络.设计模式一:操作系统 1. 进程的有哪几种状态,状态转换图,及导致转换的事件. 2. 进程与线程的区别. 3. 进程通信的几种方式. 4. 线程同步几种方式.(一定要会写 ...
- poj 1836 Alignment(线性dp)
题目链接:http://poj.org/problem?id=1836 思路分析:假设数组为A[0, 1, …, n],求在数组中最少去掉几个数字,构成的新数组B[0, 1, …, m]满足条件B[0 ...
- poj 3356 AGTC(线性dp)
题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...
- Linux vsftpd服务配置具体解释
[背景] 近日.一朋友dominoserver要进行升级.迁移,搭建了linux測试系统,也开启vsftpd服务,但是配置的ftp账号,程序无法正常下载附件. [问题跟踪] 通过ftpclient连接 ...
- C# - String与StringBuilder
A String object is called immutable (read-only), because its value cannot be modified after it has b ...