虽说是IOI'95,但是也是挺水的..for 第一问,n最大为50,所以可以直接枚举起点和终点之外的所有点,然后dfs判断是否连通;for 第二问,易知答案一定是第一问的子集,所以从第一问中的答案中枚举,也是用dfs判断。

----------------------------------------------------------------------

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#define rep(i,r) for(int i=0;i<r;i++)
#define clr(x,c) memset(x,c,sizeof(x))
using namespace std;
const int maxn=50+5;
int n=0;
int vis[maxn];
vector<int> g[maxn];
void read() {    
    for(;;) {
        int t,pd=0;
        g[n].clear();
        while(scanf("%d",&t) && t!=-2) {
            if(t==-1) { pd=1; break; }
            g[n].push_back(t);
        }
        if(pd) break;    
        n++;
    }
}
    
int dfs(int i) {
    vis[i]=1;
    rep(j,g[i].size()) {
        int t=g[i][j];
        if(t==n-1) return 1;
        if(vis[t]) continue;
        if(dfs(t)) return 1;
    }
    return 0;
}
void DFS(int i) {
    vis[i]=1;
    rep(j,g[i].size()) {
        int t=g[i][j];
        if(vis[t]) continue;
        DFS(t);
    }
}
        
int dfsJudge(int i) {
    vis[i]=2;
    rep(j,g[i].size()) {
        int t=g[i][j];
        if(vis[t]==1) return 1;
        if(vis[t]) continue;
        if(dfsJudge(t)) return 1;
    }
    return 0;
}
void work() {
    
    vector<int> ans;
    ans.clear();
    for(int i=1;i<n-1;i++) {
        clr(vis,0);
        vis[i]=1;
        if(!dfs(0)) ans.push_back(i);
    }
        
    cout<<ans.size();
    rep(i,ans.size()) cout<<' '<<ans[i];
    cout<<endl;
    
    vector<int> ans2;
    ans2.clear();
    rep(i,ans.size()) {
         clr(vis,0);
         vis[ans[i]]=2;
         DFS(0);
         if(!dfsJudge(ans[i])) ans2.push_back(ans[i]);
    }
    
    printf("%d",ans2.size());
    rep(i,ans2.size()) printf(" %d",ans2[i]);
    cout<<endl;
}
int main()
{
    freopen("race3.in","r",stdin);
    freopen("race3.out","w",stdout);
    
    read();
    
    work();
        
    
    return 0;
}

----------------------------------------------------------------------

Street Race
IOI'95

Figure 1 gives an example of a course for a street race. You see some points, labeled from 0 to N (here, N=9), and some arrows connecting them. Point 0 is the start of the race; point N is the finish. The arrows represent one-way streets. The participants of the race move from point to point via the streets, in the direction of the arrows only. At each point, a participant may choose any outgoing arrow.

 
Figure 1: A street course with 10 points

A well-formed course has the following properties:

  • Every point in the course can be reached from the start.
  • The finish can be reached from each point in the course.
  • The finish has no outgoing arrows.

A participant does not have to visit every point of the course to reach the finish. Some points, however, are unavoidable. In the example, these are points 0, 3, 6, and 9. Given a well-formed course, your program must determine the set of unavoidable points that all participants have to visit, excluding start and finish.

Suppose the race has to be held on two consecutive days. For that purpose the course has to be split into two courses, one for each day. On the first day, the start is at point 0 and the finish at some `splitting point'. On the second day, the start is at this splitting point and the finish is at point N. Given a well-formed course, your program must also determine the set of splitting points. A point S is a splitting point for the well-formed course C if S differs from the star t and the finish of C, and the course can be split into two well-formed courses that (1) have no common arrows and (2) have S as their only common point, with S appearing as the finish of one and the start of the other. In the example, only point 3 is a splitting point.

PROGRAM NAME: race3

INPUT FORMAT

The input file contains a well-formed course with at most 50 points and at most 100 arrows. There are N+2 lines in the file. The first N+1 lines contain the endpoints of the arrows that leave from the points 0 through N respectively. Each of these lines ends with the number -2. The last line contains only the number -1.

SAMPLE INPUT (file race3.in)

1 2 -2
3 -2
3 -2
5 4 -2
6 4 -2
6 -2
7 8 -2
9 -2
5 9 -2
-2
-1

OUTPUT FORMAT

Your program should write two lines. The first line should contain the number of unavoidable points in the input course, followed by the labels of these points, in ascending order. The second line should contain the number of splitting points of the input course, followed by the labels of all these points, in ascending order.

SAMPLE OUTPUT (file race3.out)

2 3 6
1 3

USACO Section 4.3 Street Race(图的连通性+枚举)的更多相关文章

  1. USACO 4.3 Street Race

    Street RaceIOI'95 Figure 1 gives an example of a course for a street race. You see some points, labe ...

  2. USACO Section 4

    前言 好久没更新这个系列了,最近闲的无聊写一下.有两题搜索懒得写了. P2737 [USACO4.1]麦香牛块Beef McNuggets https://www.luogu.com.cn/probl ...

  3. 数据结构-图-Java实现:有向图 图存储(邻接矩阵),最小生成树,广度深度遍历,图的连通性,最短路径1

    import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { pro ...

  4. Victoria的舞会2——图的连通性及连通分量

    [Vijos1022]]Victoria的舞会2 Description Victoria是一位颇有成就的艺术家,他因油画作品<我爱北京天安门>闻名于世界.现在,他为了报答帮助他的同行们, ...

  5. POJ 2513 - Colored Sticks - [欧拉路][图的连通性][字典树]

    题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit ...

  6. poj 3310(并查集判环,图的连通性,树上最长直径路径标记)

    题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...

  7. POJ2513(字典树+图的连通性判断)

    //用map映射TLE,字典树就AC了#include"cstdio" #include"set" using namespace std; ; ;//26个小 ...

  8. 图的连通性问题的小结 (双连通、2-SAT)

    图的连通性问题包括: 1.强连通分量. 2.最小点基和最小权点基. 3.双连通. 4.全局最小割. 5.2-SAT 一.强连通分量 强连通分量很少单独出题,一般都是把求强连通分量作为缩点工具. 有三种 ...

  9. 2018年牛客多校寒假 第四场 F (call to your teacher) (图的连通性)

    题目链接 传送门:https://ac.nowcoder.com/acm/contest/76/F 思路: 题目的意思就是判断图的连通性可以用可达性矩阵来求,至于图的存储可以用邻接矩阵来储存,求出来可 ...

随机推荐

  1. 《Qt编程的艺术》——8.2 显示目录层次

    现在我们准备通过创建一个小程序来获得关于InterView的实践经验,使用QDirModel和拿来就用的view,来在四个不同的view中显示主目录,如图8.5所示.在代码里,除了例行公事先实例化一个 ...

  2. 高性能 TCP &amp; UDP 通信框架 HP-Socket v3.2.3 正式宣布

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包括服务端组件.client组件和 Agent 组件.广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#. ...

  3. oc 根据文件路径获取文件大小

    第一种封装: -(NSInteger)getSizeOfFilePath:(NSString *)filePath{ /** 定义记录大小 */ NSInteger totalSize = ; /** ...

  4. 兼容所有浏览器的CSS3圆角

    兼容所有浏览器的CSS3圆角      解决CSS3圆角兼容所有浏览器的方法.本文提到了一种很不错的实现跨浏览器圆角的解决方案,但是说的不够全面,前端观察最近将整理更多更全面的资源给大家,敬请期待. ...

  5. mvc中HttpPost理解

    public ActionResult Delete(int id) { Book book = db.Book.Find(id); if (book == null) { //重定向到行动(跳转到i ...

  6. char* 和 wchar_t* 如何互相转换

    char* 和 wchar_t* 如何互相转换 C函数可以用 wcstombs - 将宽字符转换成多字符 WCHAR ->  CHAR      mbstowcs - 把多字符把转换成宽字符 C ...

  7. EBS 开发中如何动态启用和禁止请求(Current Request)的参数

    EBS 开发中如何动态启用和禁止请求(Current Request)的参数 (版权声明,本人原创或者翻译的文章如需转载,如转载用于个人学习,请注明出处:否则请与本人联系,违者必究) 我们可以使用依赖 ...

  8. 深入理解this对象

    最近一直在看js关于面向对象编程方面的东西,那么this肯定是需要一个被吃透 理解 同时灵活运用的对象 现在总结一下自己的学习成果: 我们可以用一句很形象的话来理解什么是this关键字? " ...

  9. 我定制的jquery ui主题

    打开网址 http://jqueryui.com/themeroller/,找到Gallery找到Redmond点击edit 将圆角设置成3px,让圆角更低调:将下面的每个Background的背景图 ...

  10. ajax防止重复提交请求1

    ajax防止重复提交请求 A. 独占型提交 只允许同时存在一次提交操作,并且直到本次提交完成才能进行下一次提交. module.submit = function() {   if (this.pro ...