Linux下的进程控制块——task_struct
在Linux中具体实现PCB的是 task_struct数据结构,以下实现摘自github
我想说它真的很长很长...... ↓
struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped *ruxia/
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace; #ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;
unsigned int wakee_flips;
unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee; int wake_cpu;
#endif
int on_rq; int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
struct sched_dl_entity dl; #ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif #ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif unsigned int policy;
int nr_cpus_allowed;
cpumask_t cpus_allowed; #ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
union rcu_special rcu_read_unlock_special;
struct list_head rcu_node_entry;
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
unsigned long rcu_tasks_nvcsw;
bool rcu_tasks_holdout;
struct list_head rcu_tasks_holdout_list;
int rcu_tasks_idle_cpu;
#endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_SCHED_INFO
struct sched_info sched_info;
#endif struct list_head tasks;
#ifdef CONFIG_SMP
struct plist_node pushable_tasks;
struct rb_node pushable_dl_tasks;
#endif struct mm_struct *mm, *active_mm;
/* per-thread vma caching */
u32 vmacache_seqnum;
struct vm_area_struct *vmacache[VMACACHE_SIZE];
#if defined(SPLIT_RSS_COUNTING)
struct task_rss_stat rss_stat;
#endif
/* task state */
int exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
unsigned long jobctl; /* JOBCTL_*, siglock protected */ /* Used for emulating ABI behavior of previous Linux versions */
unsigned int personality; /* scheduler bits, serialized by scheduler locks */
unsigned sched_reset_on_fork:;
unsigned sched_contributes_to_load:;
unsigned sched_migrated:;
unsigned sched_remote_wakeup:;
unsigned :; /* force alignment to the next boundary */ /* unserialized, strictly 'current' */
unsigned in_execve:; /* bit to tell LSMs we're in execve */
unsigned in_iowait:;
#ifdef CONFIG_MEMCG
unsigned memcg_may_oom:;
#ifndef CONFIG_SLOB
unsigned memcg_kmem_skip_account:;
#endif
#endif
#ifdef CONFIG_COMPAT_BRK
unsigned brk_randomized:;
#endif unsigned long atomic_flags; /* Flags needing atomic access. */ struct restart_block restart_block; pid_t pid;
pid_t tgid; #ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack_canary;
#endif
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
struct task_struct __rcu *real_parent; /* real parent process */
struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
/*
* children/sibling forms the list of my natural children
*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */ /*
* ptraced is the list of tasks this task is using ptrace on.
* This includes both natural children and PTRACE_ATTACH targets.
* p->ptrace_entry is p's link on the p->parent->ptraced list.
*/
struct list_head ptraced;
struct list_head ptrace_entry; /* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;
struct list_head thread_node; struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqcount_t vtime_seqcount;
unsigned long long vtime_snap;
enum {
/* Task is sleeping or running in a CPU with VTIME inactive */
VTIME_INACTIVE = ,
/* Task runs in userspace in a CPU with VTIME active */
VTIME_USER,
/* Task runs in kernelspace in a CPU with VTIME active */
VTIME_SYS,
} vtime_snap_whence;
#endif #ifdef CONFIG_NO_HZ_FULL
atomic_t tick_dep_mask;
#endif
unsigned long nvcsw, nivcsw; /* context switch counts */
u64 start_time; /* monotonic time in nsec */
u64 real_start_time; /* boot based time in nsec */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt; struct task_cputime cputime_expires;
struct list_head cpu_timers[]; /* process credentials */
const struct cred __rcu *real_cred; /* objective and real subjective task
* credentials (COW) */
const struct cred __rcu *cred; /* effective (overridable) subjective task
* credentials (COW) */
char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())
- initialized normally by setup_new_exec */
/* file system info */
struct nameidata *nameidata;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
struct sysv_sem sysvsem;
struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
unsigned long last_switch_count;
#endif
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespaces */
struct nsproxy *nsproxy;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand; sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending; unsigned long sas_ss_sp;
size_t sas_ss_size;
unsigned sas_ss_flags; struct callback_head *task_works; struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
kuid_t loginuid;
unsigned int sessionid;
#endif
struct seccomp seccomp; /* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
* mempolicy */
spinlock_t alloc_lock; /* Protection of the PI data structures: */
raw_spinlock_t pi_lock; struct wake_q_node wake_q; #ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task */
struct rb_root pi_waiters;
struct rb_node *pi_waiters_leftmost;
/* Deadlock detection and priority inheritance handling */
struct rt_mutex_waiter *pi_blocked_on;
#endif #ifdef CONFIG_DEBUG_MUTEXES
/* mutex deadlock detection */
struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
unsigned int irq_events;
unsigned long hardirq_enable_ip;
unsigned long hardirq_disable_ip;
unsigned int hardirq_enable_event;
unsigned int hardirq_disable_event;
int hardirqs_enabled;
int hardirq_context;
unsigned long softirq_disable_ip;
unsigned long softirq_enable_ip;
unsigned int softirq_disable_event;
unsigned int softirq_enable_event;
int softirqs_enabled;
int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
gfp_t lockdep_reclaim_gfp;
#endif
#ifdef CONFIG_UBSAN
unsigned int in_ubsan;
#endif /* journalling filesystem info */
void *journal_info; /* stacked block device info */
struct bio_list *bio_list; #ifdef CONFIG_BLOCK
/* stack plugging */
struct blk_plug *plug;
#endif /* VM state */
struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
cputime_t acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
nodemask_t mems_allowed; /* Protected by alloc_lock */
seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
struct mempolicy *mempolicy; /* Protected by alloc_lock */
short il_next;
short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int numa_scan_seq;
unsigned int numa_scan_period;
unsigned int numa_scan_period_max;
int numa_preferred_nid;
unsigned long numa_migrate_retry;
u64 node_stamp; /* migration stamp */
u64 last_task_numa_placement;
u64 last_sum_exec_runtime;
struct callback_head numa_work; struct list_head numa_entry;
struct numa_group *numa_group; /*
* numa_faults is an array split into four regions:
* faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
* in this precise order.
*
* faults_memory: Exponential decaying average of faults on a per-node
* basis. Scheduling placement decisions are made based on these
* counts. The values remain static for the duration of a PTE scan.
* faults_cpu: Track the nodes the process was running on when a NUMA
* hinting fault was incurred.
* faults_memory_buffer and faults_cpu_buffer: Record faults per node
* during the current scan window. When the scan completes, the counts
* in faults_memory and faults_cpu decay and these values are copied.
*/
unsigned long *numa_faults;
unsigned long total_numa_faults; /*
* numa_faults_locality tracks if faults recorded during the last
* scan window were remote/local or failed to migrate. The task scan
* period is adapted based on the locality of the faults with different
* weights depending on whether they were shared or private faults
*/
unsigned long numa_faults_locality[]; unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
struct tlbflush_unmap_batch tlb_ubc;
#endif struct rcu_head rcu; /*
* cache last used pipe for splice
*/
struct pipe_inode_info *splice_pipe; struct page_frag task_frag; #ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
#endif
/*
* when (nr_dirtied >= nr_dirtied_pause), it's time to call
* balance_dirty_pages() for some dirty throttling pause
*/
int nr_dirtied;
int nr_dirtied_pause;
unsigned long dirty_paused_when; /* start of a write-and-pause period */ #ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
u64 timer_slack_ns;
u64 default_timer_slack_ns; #ifdef CONFIG_KASAN
unsigned int kasan_depth;
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack */
int curr_ret_stack;
/* Stack of return addresses for return function tracing */
struct ftrace_ret_stack *ret_stack;
/* time stamp for last schedule */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven't been traced
* because of depth overrun.
*/
atomic_t trace_overrun;
/* Pause for the tracing */
atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* state flags for use by tracers */
unsigned long trace;
/* bitmask and counter of trace recursion */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_KCOV
/* Coverage collection mode enabled for this task (0 if disabled). */
enum kcov_mode kcov_mode;
/* Size of the kcov_area. */
unsigned kcov_size;
/* Buffer for coverage collection. */
void *kcov_area;
/* kcov desciptor wired with this task or NULL. */
struct kcov *kcov;
#endif
#ifdef CONFIG_MEMCG
struct mem_cgroup *memcg_in_oom;
gfp_t memcg_oom_gfp_mask;
int memcg_oom_order; /* number of pages to reclaim on returning to userland */
unsigned int memcg_nr_pages_over_high;
#endif
#ifdef CONFIG_UPROBES
struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
unsigned int sequential_io;
unsigned int sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
unsigned long task_state_change;
#endif
int pagefault_disabled;
#ifdef CONFIG_MMU
struct task_struct *oom_reaper_list;
#endif
/* CPU-specific state of this task */
struct thread_struct thread;
/*
* WARNING: on x86, 'thread_struct' contains a variable-sized
* structure. It *MUST* be at the end of 'task_struct'.
*
* Do not put anything below here!
*/
};
Linux下的进程控制块——task_struct的更多相关文章
- Linux下的进程控制块(PCB)
本文转载自Linux下的进程控制块(PCB) 导语 进程在操作系统中都有一个户口,用于表示这个进程.这个户口操作系统被称为PCB(进程控制块),在linux中具体实现是 task_struct数据结构 ...
- Linux下java进程CPU占用率高分析方法
Linux下java进程CPU占用率高分析方法 在工作当中,肯定会遇到由代码所导致的高CPU耗用以及内存溢出的情况.这种情况发生时,我们怎么去找出原因并解决. 一般解决方法是通过top命令找出消耗资源 ...
- linux下对进程按照内存使用情况进行排序
linux下对进程按照内存使用情况进行排序的命令为:ps aux --sort -rss 详细解说参见 http://alvinalexander.com/linux/unix-linux-proce ...
- linux下查看进程占用端口和端口占用进程命令
Linux下查看进程占用端口: 查看程序对应进程号:ps –ef|grep 进程名 REDHAT :查看进程号所占用的端口号:netstat –nltp|grep 进程号 ubuntu:查看进程占用端 ...
- linux 下的进程管理工具 supervisor
在linux下监控进程: 1)yum install python-setuptools linux下的python安装工具 2)easy_install supervisor 安装sup ...
- linux下监控进程需掌握的四个命令
linux下监控进程需掌握的四个命令 在LInux系统下,最困难的工作之一就是跟踪正在系统中运行的程序,尤其是现在,图形桌面使用很多的程序,只是为了生成一个桌面环境,系统中运行了太多的进程,幸运的 ...
- Linux下的进程与线程(二)—— 信号
Linux进程之间的通信: 本文主要讨论信号问题. 在Linux下的进程与线程(一)中提到,调度器可以用中断的方式调度进程. 然而,进程是怎么知道自己需要被调度了呢?是内核通过向进程发送信号,进程才得 ...
- Linux下的进程与线程(一)—— 进程概览
进程是操作系统分配资源的基本单位.线程是操作系统进行运行和调度的基本单位. 进程之间可以切换,以便轮流占用CPU,实现并发.一般进程运行在用户模式下,只能执行指令集中的部分指令. 当进程进行上下文切换 ...
- linux下查询进程占用的内存方法总结
linux下查询进程占用的内存方法总结,假设现在有一个「php-cgi」的进程 ,进程id为「25282」.现在想要查询该进程占用的内存大小.linux命令行下有很多的工具进行查看,现总结常见的几种方 ...
随机推荐
- 用CALayer实现聚光灯效果
效果图: 代码部分: #import "ViewController.h" @interface ViewController () @property (nonatomic, s ...
- C#将图片字节流转为Base64直接放入html的img标签src属性中
1,图片要转为byte[], 2,注意加上“data:image/jpeg;base64,”,这里jpeg可以换成其他. string html = "<img src='data:i ...
- STM8S和STM8L调试串口中断的注意点
1. STM8L串口中断注意点 在调试PM2.5传感器GP2Y1051的时候,发现在仿真的时候开始能够进行数据的接受,但是如果暂停之后就不能接受数据,其实只是接收了一次完整的数据. 问题程序 解决方法 ...
- 你好,C++(26)如何与函数内部进行数据交换?5.1.3 函数参数的传递
5.1.3 函数参数的传递 我们知道,函数是用来完成某个功能的相对独立的一段代码.函数在完成这个功能的时候,往往需要外部数据的支持,这时就需要在调用这个函数时向它传递所需要的数据它才能完成这个功能获 ...
- SQL中删除同一字段中重复的值
/////////////////////目地:ZDJZ_DIS中 name字段有重复的值,删除重复的值 DELETE * FROM ZDJZ_DIS WHERE NAME IN (select NA ...
- Oracle数据库之序列
Oracle数据库之序列(sequence) 序列是一个计数器,它并不会与特定的表关联.我们可以通过创建Oracle序列和触发器实现表的主键自增.序列的用途一般用来填充主键和计数. 一.创建序列 语法 ...
- Jquery中$.get(),$.post(),$.ajax(),$.getJSON()的用法总结【转载】
详细解读Jquery各Ajax函数:$.get(),$.post(),$.ajax(),$.getJSON() 一,$.get(url,[data],[callback]) 说明:url为请求地址,d ...
- PHPCMS v9 导航显示二级菜单,显示相邻栏目,内容页显示二级栏目
导航显示二级栏目 <div class="menu">{pc:content action="category" catid="0&quo ...
- web Service试用简例
1.打开文件,选择新建Asp.Net web服务. 2.出现新建页面如下. using System; using System.Collections.Generic; using System.L ...
- 50个PHOTOSHOP快捷键技能!
一.常用的热键组合 1.图层混合模式快捷键:正常(Shift + Option + N),正片叠底(Shift + Option + M),滤色(Shift + Option + S),叠加(Shif ...