POJ 1947 - Rebuilding Roads 树型DP(泛化背包转移)..
dp[x][y]表示以x为根的子树要变成有y个点..最少需要减去的边树... 最终ans=max(dp[i][P]+t) < i=(1,n) , t = i是否为整棵树的根 >
更新的时候分为两种情况..一种是要从其这个孩子转移过来...枚举做01背包..更新出每个状态的最小值..或者说直接砍掉这个孩子..那么只需将所有的状态多加个砍边...
这里的枚举做01背包..意思是由于叶子节点要放多少进去不确定..叶子节点要放的大小以及本节点的空间都在枚举更新...这种概念就是泛化背包..本质上是01背包.做多次01背包
注意到枚举空间的顺序.这样能保证更新的时候不出现混乱....
Program:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<set>
#include<ctime>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define oo 100000007
#define ll long long
#define pi acos(-1.0)
#define MAXN 155
using namespace std;
vector<int> Tree[MAXN];
int dp[MAXN][MAXN],N,P,ans;
bool root[MAXN];
int dfs(int x)
{
int i,j,y,m=Tree[x].size(),num=1,t,update;
for (i=0;i<=P;i++) dp[x][i]=oo;
dp[x][1]=0;
for (i=0;i<m;i++)
{
y=Tree[x][i];
num+=dfs(y);
for (t=P;t>=1;t--)
{
update=dp[x][t]+1;
for (j=1;j<=t;j++)
update=min(update,dp[x][t-j]+dp[y][j]);
dp[x][t]=update;
} //泛化背包转移
}
t=0;
if (!root[x]) t++;
if (dp[x][P]!=-1) ans=min(dp[x][P]+t,ans);
return num;
}
int main()
{
int i;
while (~scanf("%d%d",&N,&P))
{
for (i=1;i<=N;i++) Tree[i].clear();
memset(root,true,sizeof(root));
for (i=1;i<N;i++)
{
int x,y;
scanf("%d%d",&x,&y);
Tree[x].push_back(y);
root[y]=false;
}
for (i=1;i<=N;i++)
if (root[i]) break;
ans=oo;
dfs(i);
printf("%d\n",ans);
}
return 0;
}
POJ 1947 - Rebuilding Roads 树型DP(泛化背包转移)..的更多相关文章
- POJ 1155 - TELE 树型DP(泛化背包转移)..
dp[x][y]代表以x为根的子树..连接了y个终端用户(叶子)..所能获得的最大收益... dp[x][ ]可以看成当根为x时..有个背包空间为0~m...每个空间上记录了到到达这个空间的最大收益. ...
- POJ 1947 Rebuilding Roads (树dp + 背包思想)
题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...
- POJ 1947 Rebuilding Roads(树形DP)
题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...
- POJ 1947 Rebuilding Roads (树形DP)
题意:给一棵树,在树中删除一些边,使得有一个连通块刚好为p个节点,问最少需要删除多少条边? 思路: 因为任一条边都可能需要被删除,独立出来的具有p个节点的连通块可能在任意一处地方.先从根开始DFS,然 ...
- POJ 1947 Rebuilding Roads 树形DP
Rebuilding Roads Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...
- POJ 1947 Rebuilding Roads 树形dp 难度:2
Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9105 Accepted: 4122 ...
- DP Intro - poj 1947 Rebuilding Roads(树形DP)
版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissi ...
- POJ题目1947 Rebuilding Roads(树形dp)
Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9957 Accepted: 4537 ...
- [poj 1947] Rebuilding Roads 树形DP
Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...
随机推荐
- Node.js笔记2
入门二 5. 事件 Node.js中所有的异步I/O操作完成时都会发送一个事件到事件队列. Events 事件模块 `events.EventEmitter` 简单用法: var EventEmitt ...
- Mybaits入门之起航
前言 Mybaits技术现在很多公司都在使用,它提供了简单的API可以快速进行数据库操作,所以不管是自己做系统还是找工作都有必要了解一下. 学习一门技术如果是入门的话要么买书要么就是阅读官方的文档,而 ...
- SMACSS:一个关于CSS的最佳实践-3.Layout Rules
本篇笔者要介绍的是Layout Rules.看完本篇,大家将会知道Layout Rules的作用,以及哪些CSS应该归类为Layout Rules. 什么是Layout Rules? Layout R ...
- Java调用R——rJava的安装和配置
rJava是Java通过JRI调用R所要安装的包.配置起来比较麻烦,我参考网上进行配置,使用rJava包中example里面的示例测试,控制台显示: Cannot find JRI native li ...
- USACO Section 5.3 Big Barn(dp)
USACO前面好像有类似的题目..dp(i,j)=min(dp(i+1,j),dp(i+1,j+1),dp(i,j+1))+1 (坐标(i,j)处无tree;有tree自然dp(i,j)=0) .d ...
- python10min系列之面试题解析:python实现tail -f功能
同步发布在github上,跪求star 这篇文章最初是因为reboot的群里,有人去面试,笔试题有这个题,不知道怎么做,什么思路,就发群里大家讨论 我想了一下,简单说一下我的想法吧,当然,也有很好用的 ...
- LintCode-两数之和
题目描述: 给一个整数数组,找到两个数使得他们的和等于一个给定的数target. 你需要实现的函数twoSum需要返回这两个数的下标, 并且第一个下标小于第二个下标.注意这里下标的范围是1到n,不是以 ...
- 帝国cms灵动标签下常用标签
这里简单整理下灵动标签下的常用标签 标题名称:<?=$bqr['title']?> <?=esub($bqr[title],22)?> 限制字符22个 标题链接:<?= ...
- 别忘记给你博客的windows live writer配置 ping服务
写好一篇博客,想要实现秒收.就必须要为文章添加ping服务. 这里介绍一下给wlw添加ping服务的办法. 点击工具---选项--ping服务器. 在右侧栏中加入以下地址 http://rpc.pin ...
- 读书笔记:js设计模式
面向过程编程,面向对象编程和函数式编程> 定义一个类方法1:function Anim(){ } Anim.prototype.start = function(){ .. };Anim.pro ...