Machine Learning系列--判别式模型与生成式模型
监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出。这个模型的一般形式为决策函数:
$$ Y=f(X) $$
或者条件概率分布:
$$ P(Y|X) $$
监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model)。
生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:
$$ P\left( {Y|X} \right) = \frac{{P\left( {X,Y} \right)}}{{P\left( X \right)}} $$
这样的方法之所以称为生成方法,是因为模型表示了给定输入$X$产生输出$Y$的生成关系。典型的生成模型有:朴素贝叶斯法和隐马尔可夫模型.
判别方法由数据直接学习决策函数$f(X)$或者条件概率分布$P(Y|X)$作为预测的模型,即判别模型。判别方法关心的是对给定的输入$X$,应该预测什么样的输出$Y$。典型的判别模型包括:$k$近邻法、感知机、决策树、逻辑斯谛回归模型、最大熵模型、支持向量机、提升方法和条件随机场等.
在监督学习中,生成方法和判别方法各有优缺点,适合于不同条件下的学习问题。
- 生成方法的特点:生成方法可以还原出联合概率分布$P(X,Y)$,而判别方法则不能;生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;当存在隐变量时,仍可以用生成方法学习,此时判别方法就不能用。
- 判别方法的特点:判别方法直接学习的是条件概率$P(Y|X)$或决策函数$f(X)$,直接面对预测,往往学习的准确率更高;由于直接学习$P(Y|X)$或$f(X)$,可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
参考资料:
1. 李航. 《统计学习方法》
Machine Learning系列--判别式模型与生成式模型的更多相关文章
- Machine Learning系列--隐马尔可夫模型的三大问题及求解方法
本文主要介绍隐马尔可夫模型以及该模型中的三大问题的解决方法. 隐马尔可夫模型的是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而 ...
- Machine Learning系列--TF-IDF模型的概率解释
信息检索概述 信息检索是当前应用十分广泛的一种技术,论文检索.搜索引擎都属于信息检索的范畴.通常,人们把信息检索问题抽象为:在文档集合D上,对于由关键词w[1] ... w[k]组成的查询串q,返回一 ...
- 判别式模型 vs. 生成式模型
1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x) ...
- 产生式模型(生成式模型)与判别式模型<转载>
转自http://dongzipnf.blog.sohu.com/189983746.html 产生式模型与判别式模型 产生式模型(Generative Model)与判别式模型(Discrimiti ...
- AI 判别式模型和生成式模型
判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...
- Machine Learning系列--CRF条件随机场总结
根据<统计学习方法>一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出 ...
- Machine Learning系列--归一化方法总结
一.数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限 ...
- Machine Learning系列--L0、L1、L2范数
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
随机推荐
- 【数据库_Mysql】<foreach>标签在Mysql中的使用
foreach属性 属性 描述 item 循环体中的具体对象.支持属性的点路径访问,如item.age,item.info.details.具体说明:在list和数组中是其中的对象,在map中是val ...
- Implement Queue by Two Stacks
As the title described, you should only use two stacks to implement a queue's actions. The queue sho ...
- Dll劫持漏洞详解
一.dll的定义 DLL(Dynamic Link Library)文件为动态链接库文件,又称“应用程序拓展”,是软件文件类型.在Windows中,许多应用程序并不是一个完整的可执行文件,它们被分 ...
- POJ.2251 Dungeon Master (三维BFS)
POJ.2251 Dungeon Master (三维BFS) 题意分析 你被困在一个3D地牢中且继续寻找最短路径逃生.地牢由立方体单位构成,立方体中不定会充满岩石.向上下前后左右移动一个单位需要一分 ...
- 【bzoj4212】神牛的养成计划
Portal --> bzoj4212 Description 给你\(n\)个字符串,接下来有\(m\)个询问,每个询问由两个给定的字符串\(s_1\)和\(s_2\)组成,对于每个询问输 ...
- Oracle 解决【ORA-01704:字符串文字太长】(转)
错误提示:oracle在toad中执行一段sql语句时,出现错误‘ORA-01704:字符串文字太长’.如下图: 原因:一般为包含有对CLOB字段的数据操作.如果CLOB字段的内容非常大的时候,会导致 ...
- 虚拟机安装ubuntu14.04.5系统
参考教程 在vitualbox安装 ubuntu14.04.2 LTS教程 http://jingyan.baidu.com/article/46650658228345f549e5f8cc.html ...
- 手脱tElock 0.98b1 -> tE!
声明: 只为纪录自己的脱壳历程,高手勿喷 第一种:两次内存法 注: ①这是在win7x32系统上运行的脱壳,所以可能地址不同 ②修复的时候用等级三修复,最后修复不了的剪切掉然后转存合一正常运行,已测试 ...
- .Net并行编程之二:并行循环
本篇内容主要包括: 1.能够转化为并行循环的条件 2.并行For循环的用法:Parallel.For 3.并行ForEach的用法Parallel.ForEach 4.并行LINQ(PLINQ)的用法 ...
- SpringBoot ( 八 ) :RabbitMQ 详解
原文出处: 纯洁的微笑 RabbitMQ 即一个消息队列,主要是用来实现应用程序的异步和解耦,同时也能起到消息缓冲,消息分发的作用. 消息中间件在互联网公司的使用中越来越多,刚才还看到新闻阿里将Roc ...