题目:http://acm.hdu.edu.cn/showproblem.php?pid=1250

思路:本题的Fibonacci数列是扩展的四阶的Fibonacci数列,用递推关系式求解即可.

题目提示,所求的Fibonacci数最多2500位,所以不能用已有的数据类型表示,可以采用数组存储数字,模拟加法.

由于没有给F(n)的n最大为多少,所以需要估计一下.经过反复测试,F(7000)约为2000位左右,如果设置数组长度为2500+1,则计算得到F(7500)的结果沾满了2500+1位(),所以我们只需要计算到n=7500即可.

在写代码的时候设置一个数组a[7500][2500+1],则a[i][j]表示待求的F(i)的i的2500+1位中的第j位.

C++代码如下:

#include<iostream>
#include<string.h>
using namespace std; #define maxn 7500//最多算到
#define len 2500 + 1 //最多2500+1位
int a[maxn][len]; int main()
{
int i,j;
for(i=1;i<maxn;i++)//所有的a[i]的每一位初始化为0
memset(a[i],0,sizeof(a[i])); a[1][len-1] = a[2][len-1] = a[3][len-1] = a[4][len-1] = 1;//F(1)F(2)F(3)F(4)都为1 for(i=5;i<maxn;i++)//从5开始
{
int c = 0;
for(j=len-1;j>=0;j--)//计算F(i)
{
c += + a[i-1][j] + a[i-2][j] + a[i-3][j] + a[i-4][j] ;
a[i][j] = c % 10;
c = c / 10;
}
} int n;
while(cin>>n)
{
for(i=0;i<len;i++)
if(a[n][i])
break;//去掉前导0
for(j=i;j<len;j++)
cout << a[n][j];
cout << endl;
}
return 0;
}

上述代码,提交无法通过,显示MLE.

上述代码中a[i]的每一个元素仅存储一位数,可以用a[i]的每一个元素存多位数,例如存4位,则2500位需要625个元素存储.所以数组a可以定义为a[7500][625].如下图:

两种存储方式的每一位都是int型的,所以第二种更节省空间,也更节省时间.采用这种方式可以避免第一种存储方式所产生的TLE或者MLE.

C++代码如下:

#include<iostream>
#include<string.h>
using namespace std; #define maxn 7500
#define len 625 //每个元素可以存 4 位,一共要存2500位,一共需要 625个数组元素.
int a[maxn][len]; int main()
{
int i,j; for(i=1;i<maxn;i++)//一些初始化工作
memset(a[i],0,sizeof(a[i]));
a[1][len-1] = a[2][len-1] = a[3][len-1] = a[4][len-1] = 1; for(i=5;i<maxn;i++)//从5开始
{
int c = 0;
for(j=len-1;j>=0;j--)//计算F(i)
{
c += (a[i-1][j] + a[i-2][j] + a[i-3][j] + a[i-4][j]);
a[i][j] = c % 10000;//进位处理:不是10,不是1000,因为9999仍然是四位数,只有到了10000才能进位
c /= 10000;
}
} int n;
while(scanf("%d",&n)!=EOF)
{
if(n<=4)
printf("%s\n","1");
else
{
int i,j;
for(i=0;i<len;i++)
if(a[n][i])
break; printf("%d",a[n][i]);//先输出第一个[四位数],这样输入默认去掉前导0.
for(j=i+1;j<len;j++)//以后输入的中间0要保留.
printf("%04d",a[n][j]);//注意此处输出格式 "%04d".
printf("\n");
}
} return 0;
}

上述代码,提交可以通过.

小结:

1.由于每个元素存储4位,所以在输出的时候,除了首位的前面的0要去掉以外,后面的位的0必须保留.

例如:输出[0023][0208][1205][0001].

错误:printf("%d",a[n][j]);输出结果:2320812051

正确:先输出[0023],前面的00去掉,即:printf("%d",a[n[0]]);再输出后面,有前导0的要保留即:printf("%04d",a[n][j]);(j>=1)输出结果:23020812050001

2.采用【一个数组元素存储4位】相当于采用了10000进制,也可以采用【一个数组元素存储8位】的方法,相当于是100000000进制,那么在输出的时候也要用printf("%08d",a[n][j]);的方法.

参考:

http://blog.csdn.net/vsooda/article/details/7985496

http://blog.csdn.net/zwj1452267376/article/details/47132583

【hdoj_1250】Hat's Fibonacci(大数)的更多相关文章

  1. HDOJ/HDU 1250 Hat's Fibonacci(大数~斐波拉契)

    Problem Description A Fibonacci sequence is calculated by adding the previous two members the sequen ...

  2. Hat's Fibonacci(大数,好)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. Hat's Fibonacci(大数加法+直接暴力)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1250 hdu1250: Hat's Fibonacci Time Limit: 2000/1000 M ...

  4. HDU 1250 Hat's Fibonacci(大数相加)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Ot ...

  5. HDU 1250 Hat's Fibonacci (递推、大数加法、string)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. hdu 1250 Hat's Fibonacci

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Description A Fibonacci sequence ...

  7. HDUOJ----1250 Hat's Fibonacci

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. (二维数组 亿进制 或 滚动数组) Hat's Fibonacci hdu1250

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1250 Hat's Fibonacci(java,简单,大数)

    题目 java做大数的题,真的是神器,来一道,秒一道~~~ import java.io.*; import java.util.*; import java.math.*; public class ...

随机推荐

  1. 解题:APIO 2008 免费道路

    题面 我们发现我们可以很容易知道最终完成的生成树中有多少鹅卵石路,但是我们不好得到这棵生成树的结构,所以我们尽量“谨慎”地完成生成树·,最好是一点点加到我们要达到的标准而不是通过删掉一些东西来完成 我 ...

  2. luoguP5105 不强制在线的动态快速排序

    emm 可重集合没用用.直接变成不可重复集合 有若干个区间 每个区间形如[L,R] [L,R]计算的话,就是若干个连续奇数的和.拆位统计1的个数 平衡树维护 加入一个[L,R],把相交的区间合并.之后 ...

  3. centos上部署git

    安装Git #安装依赖环境 [root@wys01 wys]# yum install curl-devel expat-devel gettext-devel openssl-devel zlib- ...

  4. .Net并行编程之二:并行循环

    本篇内容主要包括: 1.能够转化为并行循环的条件 2.并行For循环的用法:Parallel.For 3.并行ForEach的用法Parallel.ForEach 4.并行LINQ(PLINQ)的用法 ...

  5. EL表达式格式化日期

    在EL表达式中要显示"yyyy-MM-dd"格式的日期: 使用<fmt:>格式化标签     1 在页面上导入   <%@ taglib prefix=" ...

  6. Codeforces 221 D. Little Elephant and Array

    D. Little Elephant and Array time limit per test 4 seconds memory limit per test 256 megabytes input ...

  7. Python进行数据分析(二)MovieLens 1M 数据集

    # -*- coding: utf-8 -*- """ Created on Thu Sep 21 12:24:37 2017 @author: Douzi " ...

  8. 【CodeForces】698 C. LRU

    [题目]C. LRU [题意]给定空间为k的背包和n个物品,每次每个物品有pi的概率加入(Σpi=1),加入时若发现背包中已有该物品则不改变,若背包满k个物品后再加入新物品则弹出最早加入的物品,求加入 ...

  9. 【洛谷 P1502】 窗口的星星(扫描线)

    题目链接 把每个星星作为左下角,做出长为\(w-0.5\),宽为\(h-0.5\)的矩形. \(-0.5\)是因为边框上的不算. 离散化\(y\)坐标. 记录\(2n\)个\(4\)元组\((x,y1 ...

  10. 【洛谷 P3648】 [APIO2014]序列分割 (斜率优化)

    题目链接 假设有\(3\)段\(a,b,c\) 先切\(ab\)和先切\(bc\)的价值分别为 \(a(b+c)+bc=ab+bc+ac\) \((a+b)c+ab=ab+bc+ac\) 归纳一下可以 ...